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Telling groups apart can be very difficult. The main idea is that we want to have an invariant that is rea-
sonable to calculate which can distinguish non-isomorphic groups. For knot groups, there is an invariant called
the Alexander polynomial, and it comes from a certain module that is defined purely group-theoretically.

1 The Alexander module

Given a group G, there is a construction for a series of modules which we will call the Alexander modules
of a group. Let G = G(0) B G(1) B G(2) . . . be the derived series for G, where G(i+1) = [G(i), G(i)]. The
abelianization Gab = G/G(1) of G acts on derived subgroups by conjugation, and so the abelianization

G
(n)
ab = G(n)/G(n+1) is a G/G(n)-module with this action.

Definition 1. The nth Alexander module of a group G is G
(n)
ab as a Z[G/G(n)]-module. The first Alexander

module is called the Alexander module of G.

From this point, there are a few ways of defining something like an Alexander polynomial. One option is

Definition 2. The Alexander ideal of G is the annihilator ideal AnnGab
(G

(1)
ab ).

We will discuss some other options later, like the elementary ideals or the order the module.1

When Gab is finitely generated, then the structure theorem for finitely generated abelian groups gives an
isomorphism

Gab = Zk ⊕ Z/(r1)⊕ · · · ⊕ Z/(rs)

for some k ≥ 0 and r1 . . . , rs ≥ 1. By choosing generators t1, . . . , tk and x1, . . . , xs for the free and cyclic
components, the group ring can be given as a quotient of a multivariable Laurent polynomial ring

Z[Gab] = Z[t1, t
−1
1 , . . . , tk, t

−1
k , x1, . . . , xs]/(x

r1
1 − 1, . . . , xrss − 1)

This is a Noetherian ring, so the Alexander ideal is finitely generated. Unfortunately, this does not make a
terribly useful group invariant because (1) the choice of generators for Gab will change the generating set and
(2) ideals do not have canonical generating sets. Sometimes we can choose a distinguished set of generators,
for instance by a topological consideration such as orientation. The second problem could be solved with
Gröbner bases.

Let us take a moment to translate the definitions to algebraic topology. For a topological space X, the
abelianization of π1(X) is H1(X), and for a covering space p : X̃ → X corresponding to the commutator

subgroup of π1(X), we are saying that the Alexander module for π1(X) is H1(X̃) as a Z[H1(X)]-module.
This topological point of view is what will let us calculate.

15/4/2019 Warning: the annihilator is generated by a divisor of the usual Alexander polynomial (Crowell 1964).
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Figure 1: An example of 1-cells a and b lifted according to a map q.

2 Covering spaces

A covering space p : X̃ → X is called normal if G′ = p∗(π1(X̃)) is a normal subgroup of G = π1(X). For
a normal covering space, the fiber over the base point is in one-to-one correspondence with G/G′, and the
quotient map q : G→ G/G′ can be thought of as a way to get “coordinates” for the endpoint of the lift of a

loop. If X has a CW structure, then q can be used to create the CW structure for X̃, essentially by creating
a Schreier graph for the cosets of G′.

For simplicity, let us consider the quotient G/G′ = 〈t〉 being a free group with one generator, and suppose
X has a single basepoint x0, finitely many 1-cells a1, . . . , an, and finitely many 2-cells R1, . . . , Rm. In the
cover, the 1-cells can be identified with tkx0, the 1-cells tkai, and the 2-cells tkRi, for varying k and i. See
figure 1.

This means we can represent the chain complex for X̃

C2(X̃)→ C1(X̃)→ C0(X̃)

by

Z[t, t−1][R1, . . . , Rm]→ Z[t, t−1][a1, . . . , an]→ Z[t, t−1]

where ∂Rj and ∂ai are the sum of the components in the lifted boundary, and where the boundary maps
are defined to commute with t. The C1 boundary map is ∂ai = (q(ai) − 1)ai, but the C2 boundary map is
more difficult to describe in the general case — examples will make it clear. The first homology group is the
Alexander module for π1(X), and the Z[t, t−1] action is multiplication.

The way forward is to (1) calculate the cycles in C1, (2) compute the boundaries with respect to this basis,
and (3) record this information in a presentation matrix. If there are n cycles z1, . . . , zn and m boundaries
b1, . . . , bm such that bj =

∑
iAijzi, then the n × m matrix A is the presentation matrix. If Z[t, t−1] were

a PID, then Smith normal form would be sufficient to the Alexander ideal in all cases. Smith normal form
happens to work in our examples, anyway, so we will not worry about this yet.

Example. The trefoil knot 2 is a torus knot and has a presentation 〈a, b|a3 = b2〉. The abelianization
is generated by t = [ba−1], so q(a) = t2 and q(b) = t3, thus C1 = Z[t, t−1][a, b] and C2 = Z[t, t−1][(1 + t2 +
t4)a+(1+ t3)b]. Cycles are solutions to f∂a+g∂b = 0, with f, g ∈ Z[t, t−1]. Since ∂a = t2−1 = (t−1)(t+1)
and ∂b = t3 − 1 = (t− 1)(t2 + t+ 1), every solution is a multiple of f = t2 + t+ 1 and g = −(t+ 1), so the
cycles are Z[t, t−1][(t2 + t+ 1)a− (t+ 1)b]. One can write the boundary as (t2− t+ 1)((t2 + t+ 1)a− (t+ 1)b),
so the presentation matrix is just [t2 − t + 1]. That is, the Alexander module is Z[t, t−1]/(t2 − t + 1), so
the Alexander ideal is (t2 − t+ 1). It is fairly common to balance this by multiplication by units to get the
equivalent (t− 1 + t−1).

Example. For (p, q) torus knots in general, with p, q coprime, they have a presentation 〈a, b|ap = bq〉.
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Figure 2: The left-handed trefoil knot 31.

The same sort of method gives an Alexander ideal of(
(1− tpq)(1− t)
(1− tp)(1− tq)

)
.

In more detail, the boundaries in C0 are ∂a = (tq − 1)x0 and ∂b = (tp− 1)x0, so the C1 cycles are generated
by tp−1

t−1 a−
tq−1
t−1 b since these coefficients are cyclotomic polynomials with no common factors. The boundaries

in C1 are generated by (1 + tq + t2q + · · ·+ t(p−1)q)a− (1 + tp + t2p + · · ·+ tp(q−1))b = 1−tpq
1−tq a−

1−tpq
1−tp b. This

is evenly divided by the cycle with quotient (1−tpq)(1−t)
(1−tp)(1−tq) , hence this is the generator for the Alexander ideal.

Example. The group G = 〈a, b, t|tat−1 = b2, tbt−1 = a〉 has a Z abelianization with q(a) = q(b) = 1,
q(t) = t. The cycles are Z[t, t−1][a, b], and the boundaries are ta− 2b and tb− a. The presentation matrix is[

t −1
−2 t

]
which has the Smith normal form [

1 0
0 t2 − 2

]
thus the Alexander ideal for G is (t2 − 2).

Example. Two unlinked circles. The fundamental group of the complement is G = Z ∗ Z, and the
abelianization is Z2, generated by s and t. The cover’s C1 is Z[s, t][a, b] ∼= Z[s, t], and since these are all
cycles and there are no boundaries, this is the Alexander module. The annihilator is (0).

Example. The Hopf link. The fundamental group of the complement is Z2, so it is already abelian.
There are no cycles, so the Alexander module is 0, hence the annihilator is (1).

3 The Wirtinger presentation

If K ⊂ S3 is a knot, the knot group of K is π1(S3 −K). Through a straightforward application of the van
Kampen theorem, one can use a knot diagram to create a presentation of a knot group. First orient the
knot then for each segment in the knot diagram assign a generator representing a right-handed loop. At each
crossing, we obtain relations according to the diagram in figure 3.

The abelianization of a knot group is always Z, which is because the relations force the two halves of an
understrand to have the same image in the abelianization. The choice of generator in Z corresponds to the
orientation of the knot: if the generator is an image of a segment generator, then it corresponds to the given
knot orientation, and otherwise to the opposite.

So, although the knot group is a homeomorphism invariant, the Alexander ideal could, in principle,
detect chirality through the choice of generator. A reversed orientation would correspond to the substitution
t 7→ t−1 in the ideal. However, for knot groups the polynomials in an Alexander ideal are symmetric Laurent
polynomials, so orientation detection fails. This symmetry follows from the following observation. The Knot
group

However, we equally could have chosen the relations on the other side of the knot like in figure 3.
By considering the inverses of the generators to be generators of the group, then we have the exact same

group presentation but with t−1 having the same action as t. Thus polynomials in the Alexander ideal can
be given as polynomials in t+ t−1.
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Figure 3: Wirtinger relators behind and in front of the knot.

Figure 4: The knot 52 with relations.

A consequence to this is that we can sometimes detect when a group is not a knot group. A previous
example, like a knot group, had a Z abelianization, yet its Alexander ideal was not symmetric: (t2 − 2).

The Wirtinger presentation for a knot has a nice property that, if a1 . . . , an are generators for segments,
then in the covering space the lifts go from tkx0 to tk+1x0, so ai − an is a cycle for all i. This makes it easy
to rewrite the boundaries, because it amounts to ignoring an in the image.

Example. The knot 52 (figure 4) through the calculations yields an Alexander ideal (2t2 − 3t+ 2).

4 Level saturation

In the case of a Z abelianization, the cycles each have a maximal vertex with respect to the Z-coordinate.
We call a particular Z coordinate a level, and we call the level saturated if every generator at the level can
be written as a sum of generators at a lower level. By reversing the Z generator, we can consider saturation
in the other direction, and a bidirectionaly saturated level is a level which is saturated with respect to
both generators. Since the cover is normal, saturation is independent of the level, so we call the group
bidirectionally saturated if any level is bidirectionally saturated.

This amounts to a criterion for the following lemma:

Lemma 1. If G is finitely generated and bidirectionally saturated, then G
(1)
ab is a finitely generated group.

If G
(1)
ab is finitely generated, then the Alexander ideal can be calculated by computing the matrix of the t

action and then computing the minimal polynomial of that matrix. Thus, in such a case the Alexander ideal
generator is monic.

Conversely, if the Alexander ideal is a principal ideal and both the leading and constant terms of the

generator are ±1, then G
(1)
ab is finitely generated. This is because the generator gives a proof of bidirectional

saturation.
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Figure 5: Knot sum K1 +K2 with sphere Σ.

4.1 Fibered knots

A fibered knot is a knot K whose complement S3 −K is a fiber bundle over S1 by Seifert surfaces. Such a
fiber bundle gives a monodromy action coincident with t, so the annihilator must be generated by a monic
polynomial.

A partial converse is given by Stallings.

Theorem 1 (Fibration theorem, Stallings 1962). Given a compact irreducible 3-manifold M , a finitely
generated group G not isomorphic to Z/2Z, and a short exact sequence 1→ G→ π1(M)→ Z→ 1, then M
fibers over S1.

This applies since

Definition 3. A 3-manifold is irreducible if any smooth sphere bounds a ball.

Lemma 2 (Alexander’s lemma). Up to isotopy, there is a unique PL/smooth embedding of S2 into S3.

In particular, this implies that if the commutator subgroup of π1(S3 −K) is finitely generated, then not
only is the Alexander ideal generator monic, but K is a fibered knot.

Example. 52 is has a non-monic generator, so it is not a fibered knot.
The homology group being finitely generated is not enough for being a fibered knot.

• For ≤ 10 crossings, monic is equivalent to being fibered.

• For 11 crossings, there is 11n73, which has a nontrivial monic polynomial but is not a fibered knot.

• (Hirasawa). For 11 crossings, monic and knot genus matches degree is equivalent to being fibered.

The saturation condition can be adjusted to deal with commutator subgroups. In fact, if the Wirtinger
presentation saturates level 1 at the homotopy level, then it is a fibered knot. Torus knots are examples.

5 Knot sums

Given two knots K1,K2, the Alexander ideal of the sum K1 +K2 is the product of the ideals.
A preliminary fact is that the knot group is isomorphic to the complement of the knot in a ball with one

point of the knot at the boundary of the ball. This can be seen by performing an inversion of S3 through a
point inside the knot. The tangent point can be split into two separate strands. Then the knot sum amounts
to identifying the boundaries of the knot’s respective balls.

Let Σ be a sphere containing the K1 part of the sum and which intersects the sum in two points, as in
figure 5. The van Kampen theorem says that π1(K1+K2) = π1(K1)∗π1(Σ)π1(K2), where the amalgamation in
particular identifies the generators for the two strands. By taking the Wirtinger presentation and choosing
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Figure 6: The Borromean links.

these identified strands as the ones to remove in the basis change for computing cycles, the presentation
matrix looks like [

A1 0
0 A2

]
so the annihilator is the product of the annihilators.

This does not mean that an irreducible generator implies the knot is a prime knot, since there are knots
whose Alexander ideal is (1). However, it is true for knots with 10 or fewer crossings.

6 Elementary ideals and order ideals

One annoyance with the theory is that Z[t, t−1] is not a principal ideal domain. We will discuss two corrections.
The first is to tensor everything with Q, making Q[t, t−1] a principal ideal domain, and the generator is a

kind of Alexander polynomial. Using annihilators is not the usual definition, however, but instead the order
ideal is used. Since the Q-tensored Alexander module is a finitely generated module over a principal ideal
domain, it is a direct sum of free and cyclic Q[t, t−1]-modules. The order ideal is the product of the orders
of each component. This is well-defined and does not depend on the particular decomposition.

The order is also the product of the diagonal after taking the presentation matrix to Smith normal form,
which is well-defined over a principal ideal domain. This can also be computed by taking the ideal generated
by all of the n× n minors, given that n is the number of generators for the Alexander module. The order is
to the characteristic polynomial as the annihilator is to the minimal polynomial.

The first elementary ideal is the ideal generated by the n × n minors of the presentation matrix when
the module is still over Z[t, t−1]. Elementary ideals are principal for knot groups, so we get a well-defined
generator up to multiplication by a unit, which is the traditional Alexander polynomial.

7 Links

For links, the orientation of component knots can matter.
If links are split links, in that there is a separating sphere, then the Alexander ideal is (0). This is because

the fundamental group is a free product and the Alexander ideal will have infinite cyclic components.
Example. The Borromean links (figure 6) have 8 choices for the orientations, yet the annihilator is

always (s− 1, t− 1, u− 1). Link 42
1 has 4 choices, giving two ideals (t+ u−1) and (t+ u).

6



References

[1] John Stallings, “On fibering certain 3-manifolds,” Topology of 3-Manifolds and Related Topics, Ed. M.
K. Fort, Jr. New Jersey: Prentice Hall, 1962. 95–100.

[2] John Milnor, “Infinite cyclic coverings,” Conference on the Topology of Manifolds, Ed. John G. Hocking.
The Prindle, Weber & Schmidt Complementary Series in Mathematics, Vol. 13. Boston: Prindle, Weber
& Schmidt, 1968. 115–133.

[3] G. Torres, R. H. Fox, “Dual presentations of the group of a knot,” Ann. of Math. (2) 59, (1954). 211–218.

[4] W. B. Raymond Lickorish, An introduction to knot theory. Graduate Texts in Mathematics, 175. New
York: Springer-Verlag, 1997.

7


