
Doing math the Lean way
Some things I’ve found to be useful to know

Kyle Miller — University of California, Berkeley

Berkeley Lean Seminar, June 26, 2020



Motivation
There is a lot of stuff going on in Lean and mathlib.

Much of it is undocumented.

It merely resembles math as we know it (type theory ≠ set theory).

So: here are some notes from one fellow traveler to another.



Resources
- The Lean Reference Manual
- Theorem Proving in Lean
- the Lean community Zulip

- both by asking questions and the chat history

- Following the definitions deep into mathlib



Universes



Universes
Everything in Lean is a term of precisely one type.

Types, too!

The type universes are an ℕ-indexed family of types

Type 0 has the synonym Type for convenience.



Universes
Universes solve Russell-style paradoxes:

Objects that contain stuff in a particular universe live in a higher universe.

The universe Type is where most of math happens (sorry logicians).

You might use higher universes for indexed families.



Universes in mathlib
Universe polymorphism is pervasive in mathlib

If a statement generalizes to higher universes, why not?

But higher universes are of limited practical use (for a mathematician)

Declare universe indices with

Use them like

The universe variables represent natural 
numbers, not the universe itself.



Universes in mathlib
Another notation you’ll see is

The star indicates Lean should create a fresh universe variable for you.

Equivalently,



An additional very special universe
There is a universe below Type, called Prop, the type of all propositions.

It behaves differently from other universes, so it is not included in Type*

Type u = Sort (u + 1).

There is a Sort*, too.



What is special about Prop?
Recall: in math equality tends to be extensional

this means a thing is its observable properties

ex. sets by their elements

ex. functions by their evaluations



What is special about Prop?
In Lean, there is an axiom that propositions are extensional:

A proposition is what it’s equivalent to.



What is special about Prop?
Consequence: every proposition equal to one of the following two:

But we don’t necessarily know which it is!  That’s math!

← provable, has the proof intro

← not provable, has no terms by definition



Aside: the Law of the Excluded Middle
Lean has function extensionality and propositional extensionality.

Together, Diaconescu’s theorem applies, giving

This is what it means for every proposition to be equal to true or to false



Aside: decidability
There is no function that can take an arbitrary Prop and tell you, definitively, 
whether it is true or false.

Lean has a facility for a partially defined function Prop → {true, false}, so to speak.

Double negation elimination does not follow from LEM!



A consequence of propext
Let’s look at proofs of existence: ∃ x, p x

This is shorthand for Exists p, with

So, Exists.intro w h would be a proof if h is a proof of p w

Note. Exists is a Prop — if it’s true, it is equal to true, so has exactly one proof. 
Hence, Exists.intro w h = Exists.intro w' h'



A consequence of propext
This means you cannot define a function

by reaching into a proof of existence.

This is because of the substitution principle:

Substituting in equal things yields equal things.

We would need this to be true:



Let’s try anyway

Lean knows the target goal is any 
Sort, which includes things in 
Type.  Since Exists is a Prop, the 
generated recursor is only allowed 
to construct a Prop.



Let’s try anyway

Lean knows the target goal is any 
Sort, which includes things in 
Type.  Since Exists is a Prop, the 
generated recursor is only allowed 
to construct a Prop.

This is generated by the “equation compiler” 
from the inductive definition.



Prop vs Type
By default, everything in Type* that you refer to must be constructible.

Prop is sort of a escape hatch where we can work with the truth of a statement, 
even if there might be no way of computing it.

Lean takes great pains to keep you from using “illegally obtained” data, but you 
are free to use it in proofs supporting a construction.



Doing classical logic
That said, you can avoid worrying about any of this by declaring

This causes Lean to pretend everything is decidable and to not worry if 
constructions are actually constructible by automatically tagging them with 
noncomputable for you.



The axiom of choice
Lean’s version of the axiom of choice is that there is a consistent way of choosing 
an term from every type that has propositionally been proven to have a term.

With this, you can easily define the some function from before: every statement of 
nonemptiness has a canonical proof by choice.



Sets and subtypes
A “set” in Lean is not what you would expect.

It is an indicator function on a type.

Hence: a set is a subset of a type



Subsets as indicator functions
We are used to describing subsets with indicator functions.

Lean gives us special syntax for this:



Subsets as indicator functions
What problem is this solving?

In Lean, every term belongs to precisely one type.

If a subset were a type, then its terms would not be terms of the total type.

Elements of a set are terms of the total type.

Downside: a set is not a type itself.  It’s a term of a function type.



Subtypes
There is a way to convert a set into a bona fide type

If s is a set, then subtype s is a type whose terms are elements of s

This relies on propositional extensionality to work out.

subtype.val : subtype s → α

is an injection that gives precisely the elements of s.



Subtypes

Lean has a concept of coercions, indicated by upward arrows.  Lean will 
automatically coerce sets to subtypes in certain locations.

- As the domain of a function
- When assigning to a variable that is supposed to be a Type.

Use                                             to see the underlying function names for arrows.



Coercions



Example: “vectors”

These are homogeneous lists of a particular length.

It is a list along with a proof that it is of a given length.


