ALL THE WAYS I KNOW HOW TO DEFINE THE ALEXANDER POLYNOMIAL

KYLE A. MILLER

AsstrAcT. These began as notes for a talk given at the Student 3-manifold seminar, Spring
2019. There seems to be many ways to define the Alexander polynomial, all of which are
somehow interrelated, but sometimes there is not an obvious path between any two given
definitions. As the title suggests, this is an exploration of all the ways I know how to define
this knot invariant. While we will touch on a number of facts and properties, these notes
are not meant to be a complete survey of the Alexander polynomial.
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2 KYLE A. MILLER

1. INTRODUCTION

Recall that a link is an embedded closed 1-manifold in S3, and a knot is a 1-component
link. As usual, our embeddings are either smooth or piecewise-linear.

In 1928, Alexander defined a polynomial invariant Ag(t) € Z[t*!], defined up to multi-
plication by +t", that is able to distinguish the knot types of all 35 knots with up to eight
crossings [1]. His definition is purely an invariant of the group m;(S% - K).

There have been many ways the Alexander polynomial has been redefined, refined, and
generalized, for example the Alexander-Conway polynomial, Reidemeister torsion, the
HOMFLY-PT polynomial, knot Floer homology, Vassiliev invariants, and as a U,(gl(1[1))
quantum invariant, to name a few. The plan is to go through as many of these as I can,
hopefully in a not completely superficial manner.

No prior knowledge about the Alexander polynomial is assumed. The reader ought
to be comfortable with first-year graduate algebraic topology and algebra, at least to get
some basic definitions, and it might be helpful be familiar with a little 3-manifold topol-
ogy. These notes might be updated from time to time.

2. ALEXANDER’S DEFINITION

This section is a summary of Alexander’s original work from [1], with only mild re-
finements for modern sensibilities. Making sense of his procedure will be reserved for
Section 3, but it might be worth knowing the quick overview: if G = 7;(S® - K) for K a
knot, then the commutator subgroup’s abelianization is a module over the group ring of
the abelianization of G, and the Alexander polynomial is the determinant of this mod-
ule’s presentation matrix, which is square. (Equivalently, we take the first homology of
the infinite cyclic cover of S® — K as a module over the group ring Z[H,(S°® - K)].)

2.1. The Dehn presentation. Given a diagram for a knot K, Dehn described a procedure
to write a presentation for 17, (S® - K). Choose a basepoint well outside the diagram. Each
face corresponds to a group generator by taking a loop that goes from the basepoint, over
the plane, down through the face, then back under the plane to the basepoint (Figure 1).

Q>
S

Ficure 1. A generator for the Dehn presentation

fig:dehn-generator

For the “outer” face, where the basepoint lies, the corresponding generator is trivial.
The other relations come from crossings.

Imagine a nullhomotopic loop sitting between the two strands of a crossing, oriented
counterclockwise in Figure 2. This can be read off as the word x,-x._lxkxgl. If m is the

]
“outer” face, then

711(S® = K) = (x1,..., %y | X,, = 1 and all crossing relations).
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xI; M|

FIGUre 2. A crossing with the regions labeled by their Dehn generators.
This crossing induces the relation xixj_lxkxgl =1.

fig:dehn-relation

This can be proved using the van Kampen theorem: cutting out a ball neighborhood from
each crossing gives a space that is the complement of a planar 4-valent graph (whose
fundamental group is free since its complement is a handlebody), and rather than gluing
the balls back in, one can get a homotopy equivalent space by gluing in disks that separate
the two strands at a crossing.

example:dehn-trefoil
Example 2.1. For the trefoil knot 3;, we take the usual diagram and label all the “interior”
taces with generators then work out the relations at the crossings:

x4y XX 4

Xy ¥, Xq"

Since it is easy enough to immediately eliminate the generator for the “outer” face, we do
so. Hence,

701(S3 = 31) = (x1, %0, %3, %4 | x1x2x;1,x2x3x;1,x3x1x;1).

Remark 2.2. This is the presentation Dehn used in 1914 to show that the outer auto-
morphism group Outr;(S® - 3;) (of automorphisms modulo inner automorphisms) is
isomorphic to Z/2Z, from which fact one can show that the trefoil knot is chiral [8].

Remark 2.3. Notice that x4 = x3x;, so we can eliminate the generator to get
701(S% = 37) = (x1, %5, %3 | xlxle_lxgl,xzx3xfxgl).
This reveals x5 = x1x2x;1, so with one more elimination we get
701(S% = 37) = (x1, %, | xlexzxflxglxl_l)
This is the three-strand braid group Bj; (the fundamental group of the unordered config-

uration space of three distinct points in C).

DRAFT 2020/11/14 18:57:28



4 KYLE A. MILLER

2.2. Abelianization. Recall that the abelianization H;(G) of a group G is the universal
group that every homomorphism G — A factors through, for A an abelian group. Con-
cretely, H,(G) = G/[G, G] where [G, G] is the commutator subgroup.

Also, recall that H, (rt; (S3~K)) = H;(S3~K) = Z. The first isomorphism is the Hurewicz
theorem, and the second isomorphism is due to Alexander duality.

The abelianization of the Dehn presentation can be described using winding numbers.
After giving K an orientation, the homomorphism 7;(S® — K) — Z is from assigning to
each generator x; the winding number of K about a point in its corresponding region, or
equivalently from the linking number between x; and K. This is reflected in the following
relations, where the green numerical label is the image of that region’s generator in Z:

"/

2.3. The associated matrix. Alexander takes the Dehn presentation and puts it into
“canonical form,” and from there he produces the associated matrix. If xo,x1,...,%,, X, 11
are the generators for every region, with xy = 1 corresponding to the “outer” region and
x,41 corresponding to a region neighboring the one for xg, then for p : 7;(S® - K) — Z
being the abelianization one can substitute

— / —
S= xn+l - xi’l+1

) _ o—plx

x/ = S_p(xn)x

n n

to get a system of generators s,x],...,x;, such that p(x)) = 0 for 1 <i < n and p(s) = £1.
Substituting these into the relation xl-x]-_lxkxgl =1, where x; and x; are the regions to the

left of the understrand (with respect to the strand’s orientation), gives a relation of the
form

(sxis™t) (s(x]’-)_ls_l) X (xp) 7t =1

For example, in the following crossing with the labeled abelianization values,
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we have
Tt = (P ((x]'-)_ls_p) (sP~1xp) ((x))7's7P)

J
-1 “1.-1 -1 -
=sP (sxjs™") (s(x;) sT) xp (xp) 7 s7P,

and then we can conjugate the relation by s7.
From here, Alexander writes x! for sxs~! and then formally linearizes the relations to
get equations of the form

XX

’ ’ ’ ;) _
tx; —tx;+ X —x, = 0.
The associated matrix M is a matrix whose entry M;; is the coefficient in front of x;

for the formally linearized relation from crossing i. Alexander’s mnemonic is illustrated
in Figure 3—the two regions to the left of the understrand are marked with a dot, and
in counterclockwise order the regions are taken as an alternating sum with the dotted
regions multiplied by .

—~—— {x‘i-tx:;f)(k'—)‘;

Ficure 3. Mnemonic for the associated matrix fig:alexander-mnemonic
example:ass-mat-trefoil
Example 2.5. From Example 2.1, we get abelianized relations
_ ’ ’ ’
_ ’ ’ ’
0 = tx] —txy + X3,

using that the “outer” region is zero. These give the associated matrix

1 ¢t 0 -t
01 t —t].
t 01 —t

def:original-alexander-poly

Definition 2.6. Let M be an associated matrix for a knot K, and let M’ be the result
of crossing off the s column of M (that is, cross off any column associated to a region
neighboring the “outer” region). The Alexander polynomial Ag(t) is the determinant of
M’

We will defer a proof that this is well-defined until Theorem 3.25.
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6 KYLE A. MILLER

Example 2.7. Any of the first three columns of the associated matrix in Example 2.5 is
“the s column,” so we calculate that

1t —t
As (t)=det|0 1 —t|=—t(1-t+1?).
t 0 -t

Recall that this is only defined up to multiplication by +¢".

Remark 2.8. 1 slightly modified Alexander’s definition. In the original, the “outer” face
still has a column, and then two columns with adjacent abelianization values must be
removed before the determinant is computed.

3. THE ALEXANDER MODULES

sec:alexander-modules

According to Rolfsen [24], Alexander knew that this rather ad hoc definition comes
from the following (explained by Milnor in [22] for chains over a field). Let X be a topo-
logical space with G = 171 (X). The abelianization 7t;(X) — H;(X) corresponds to the uni-
versal abelian cover p : X — X, where imp, = [G,G]. The group H;(X) acts on X by deck

transformations, and hence it acts on the chain complex C,(X).

Definition 3.1. The Z[H;(X)]-module H;(X) is the ith Alexander module for X.

In the case of X = S3—K, the space X is known as the infinite cyclic cover. The group al-
gebra Z[H,(X)] is the ring of Laurent polynomials Z[t*!] where ¢ is a generator in H;(X),
the image of a meridian. Most of the Alexander modules of knot complements are trivial:

o Hy(X)=2Z[t*']/(t - 1) = Z since t acts by the identity.

e H;(X)=0ifi>2. Since X is a noncompact 3-manifold, this is clear for i > 3. For
i = 2, one can show this by decomposing X using lifts of a Seifert surface then
carefully applying the Mayer-Vietoris sequence. A somewhat fancy way of show-
ing this fact is as follows (from [22] and [29]). Consider the short exact sequence
of chain complexes

0 Ci%Q) 5 C(XQ) 5 C(6Q) -0,
which can come from thinking about C;(X; Q) as Q[t*!]®C;(X) after choosing lifts
of each chain then noting that py is from ¢ > 1. This gives rise to a long exact
sequence
d = t—1 = P+
-+ > H; 1(X;Q) - H;(X;Q) — H;(X;Q) — H;(X;Q) — ---.

Since H]-(X;Q) =0 for i > 2, we have an isomorphism

H,(X;Q) 5 Hy(X; Q).

The space X deformation retracts onto a 2-skeleton, so X is also two-dimensional.
This means

_ _ P _
H,(X;Q) = ker(C(X; Q) — C1(X;Q)),
so, since Q[t*!] is a PID, H,(X; Q) is a finitely generated free Q[t*!]-module. Be-

cause 0 — Q[t*!] A Qﬂil] — Q — 0 is exact, it follows that t —1 cannot be
surjective, and thus H,(X;Q) = 0. Similarly, Hy(X;Z) is a free Z-module due
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to X being two-dimensional. By the universal coefficient theorem, Hy(X;Q) =
Q[t*']® H,(X;Z), and therefore H,(X;Z) = 0.

Hence the only interesting Alexander module for a knot is H;(X), sometimes called the
Alexander module of a knot.

Remark 3.2. The above long exact sequence ends (over Z) with

Hy(X) =5 H{(X) 2 Hy(X) —2 Ho(X) == Ho(X) —2 Hy(X)

Z s 7 0 .7 s Z

Thus H;(X) LN H,(X) is surjective, and since H;(X) is finitely generated as a Z[t*!]-
module, ¢t —1 is injective as well.

[This is actually a rather neat fact from ring theory due to Vasconcelos: if R is a commutative ring, M is
a finitely generated R-module, and f : M — M is a surjective homomorphism, then f is an isomorphism.

Take M as an R[f]-module. The ideal I = (f) has IM = M by surjectivity. Nakayama’s lemma is that
IM = M implies there is an i € I such that im = m for all m € M (the lemma only uses that M is finitely
generated). Since i = pf for some p € R[f], fm =0 impliesm=im=pfm =0, so f is injective!]

Remark 3.3. For general X, the first Alexander module only depends on G = 71 (X) and the
choice of abelianization. Let G&>G’>G” >+ - - be the derived series for G, where G’ = [G, G],
G” =[G’,G’], and so on.

G acts on each derived subgroup by conjugation, so the action descends to quotients
G/GU+D) for all i > 0. The kernel of this action is all those g € G such that for all h € G,
ghg G+ = hGU+1), which by normality is the condition [g, h] € G!*1). Hence the abelian
group G'/G*1) is a Z[G/G'"]-module. Cochran calls these higher-order Alexander mod-
ules [3], which are a source of “nonabelian” invariants.

One can identify H;(X) with G’/G” since 7t; (X) = G’, and through the above discussion
we see how G’/G” is a (G/G’)-module in purely group-theoretic terms.

If G is a finitely presented group, then so is G/G’, and furthermore G’/G” is a finitely
presented Z[G/G’]-module. This fact will be made clear in Section 3.3.

Remark 3.4. A metabelian group G is a group whose commutator subgroup is abelian (that
is, one whose derived series terminates at G” = 1). The first Alexander module of a group

is a “metabelian” invariant, meaning G/G” has the same first Alexander module as that
of G.

The idea of the Alexander polynomial is to capture some of the essence of H;(X) in a
way that can be put into a normal form. The classification of finitely presented Z[t*!]-
modules is not so straightforward!

3.1. Orders. While the ring Z[t*!] is a Noetherian unique factorization domain, it is not

a principal ideal domain, so the structure theorem does not apply to H; (X). Passing to Q
coefficients, we have Q[t*!], which is a PID.
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8 KYLE A. MILLER

In general, for R a PID and M a finitely generated R-module, the structure theorem
gives a decomposition into cyclic modules

M = éR/(xi)
i=1

for some elements x; € R (possibly zero). The order of M is the ideal order(M) = ([TiL; x;),
which is a well-defined invariant of the module.

Remark 3.5. As it turns out, Ag(t) generates order(H;(X;Q)). The order can recover Ag(t)
by using Corollary 3.40, that Ag(1) = +1.

3.2. Elementary ideals. There is a way to fix order theory for the failure of Z[t*!] being
a principal ideal domain that instead uses its being a unique factorization domain.
For an R-module M, a free presentation an exact sequence

Fi)G%MHO

with F and G both free R-modules (so M = coker A). By choosing bases for F and G, we
can regard A as a presentation matrix.

Definition 3.6. Let M be a R-module with a presentation F A RS = M — 0 for some
s € IN. The ith elementary ideal (or Fitting ideal) £;(M) C R is the ideal generated by the
(s —1) x (s —i) minors of the presentation matrix A. Equivalently, it is the ideal generated
by the image of the map A*"'F ® A*7(R®)* — R induced by A A : AS'F — ASTIG.

That this definition does not depend on the presentation for M is a matter of checking
that the elementary ideals remain the same after elementary transformations of the pre-
sentation matrix. The general case is given in [9, Corollary 20.4], and the case of finitely
presented modules (where F is finite rank) can be seen in [7,11,20].

The first Alexander module is finitely presented as a Z[t*!]-module, which we will see
in Section 3.3.

Definition 3.7. The ith Alexander polynomial A%(t) of a knot K is the GCD of the ideal
E;(H{(S3-K)). (Recall: the GCD of an ideal is the smallest principal ideal containing it.)

As it will turn out in Theorem 3.25, Ag(t) = A%(t) is the Alexander polynomial

Remark 3.8. Since determinants have cofactor expansions, the elementary ideals of an
R-module M form a filtration

EoM)CEM)C---CE(M) =R

The GCDs of these ideals form a parallel filtration. Thus, each Alexander polynomial of
a knot is divisible by the next. The infinite sequence

(AY/AY, ALIAG, . AT A A 1)
is an ordered factorization of the Alexander polynomial that is an invariant of K.
Example 3.9. Both 8,5 and 9,4 have AIO<(t) = (1-3t+t%)(1-t+t%)%, but Aélg(t) =t?>~t+1 and
Aém(t) = 1. Their modules are H(S3 — 8;¢) = Z[t*']/((1-3t+t?)(1-t+t2))@Z[t*']/(1-t+1?)
and H;(S3—9,4) = Z[t*1]/((1 = 3t + t2)(1 — t + t?)?).
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Example 3.10. The knot 6; has Alexander module Z[t*!]/(2 — 5t + 2¢?) and the knot 9
has Alexander module Z[t*!]/(2 —t)® Z[t*']/(2t — 1), so they are distinguishable by their
modules but not by their Alexander polynomials (in fact, &) is the same for both but &
is different: (1) versus (3,1 +t)). Over Q, H;(S3 - 61;Q) = H;(S3 - 94¢; Q). This is noted in
Gordon’s survey [14].

Remark 3.11. The formation of elementary ideals commutes with base change [9, Corol-
lary 20.5]: for a ring homomorphism R — S and an R-module M,

For example, Z[t*'] — Q[t*'] gives
&i(H(S* - K;Q)) = Q[¢*1]€;(H, (S - K)).

What can happen is that Z[t*!] ideals of the form (p,q(t)) for p € Z — {0} and q(t) € Z[t*]
become Q[t*!].

Proposition 3.12 (Crowell [6], [9, Exercise 20.6]). The annihilator Annyj:1)H;(S3 - K) of
the Alexander module for a knot K is the principal ideal generated by A%(t)/Ak(t).

Proof. Consider an n x n square presentation matrix A : Z[t*1]" — Z[t*!]" for the Alexan-
der module of a knot K (Theorem 3.38). There is an adjugate/cofactor matrix A* satisfying
AA* = A*A = det(A)I = A%(t)I, and the entries of A* are all the (n—1) x (n—1) minors of A.
Since A}<(t) is the GCD of the entries of A%, letting po = A?((t)/A}((t) we have a commuta-
tive diagram

Z[# ) A Z[# )
ANk (t l \ lA /AL (t
+1]n ) Z +1

An element f € Z[t*!]is in the annihilator iff fZ[t*!]" C im A. By the upper triangle of
the diagram, for f in the annihilator, f im(A*/Ag(t)) C poZ[t*']", and since the entries of
A*/A}<(t) are coprime, we see f € (yg). By the lower triangle of the diagram, multiplying
an element by p( puts it into the image of A, so pq is in the annihilator. Therefore, the
annihilator is the principal ideal (p). O

Example 3.13. If A%(t) = 1, then H;(S? - K) = 0, which implies the derived series stabi-
lizes at G’ = G”. (G’ is a perfect group.)

Example 3.14. Extending the ring to the PID C[t*!], we have a decomposition

Hy (S3 = K;€) = (P TtV (pi (1))
i=1

where p;(t) € C[t] and, for i > 1, p;,_1(t) | pi(t). There is a diagonal presentation matrix

with p;(t) at position (i,7). E(H;(S3-K;C)) is generated by the product p;(t)---p,_x(t).
The annihilator is generated by p,,(t).
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Remark 3.15. For an R-module M, the closed subset of Spec R defined by &£;(M) defines the
set of prime ideals Q for which the localization Mg, cannot be generated by i elements [9,
Proposition 20.6]. Less precisely, if £;(M) = R then M cannot be generated by i elements.

Fori>0, Ann(M)&;(M) C &;_1(M), and if M can be generated by n elements, Ann(M)" C
Eo(M) [9, Proposition 20.6].

Remark 3.16. By looking at the effect of +1 surgery on crossings:

Theorem 3.17 ([20, Theorem 7.10]). If, for K a knot, £;(H,(S?—K)) = Z[t*!], then K has
unknotting number u(K) > i.

Remark 3.18. Unlike the case over Q, the first Alexander module might not be a di-
rect sum of cyclic modules. The pretzel knots K; = P(107,-1,3) and K, = P(25,-3,13)

have the same elementary ideals, but H;(S3 — K;) is a direct sum of cyclic modules where

H;(S3 - K,) is not. This uses an invariant of the module called the row class [12].

The following theorem gives some structure for the Alexander module for certain knots.
(We will see that Alexander polynomials of knots are always of the form specified in the
theorem.)

thm:crowell-zmod-struct

Theorem 3.19 (Crowell [5]). If K is a knot with knot group G = 1;(S> — K) and Alexander
polynomial

th+1 + 2h-1

AK(t):C0+C1t+"'+Ch_1th_l+Chth+Ch_1 "'+C1t +C0t2h,

and if ¢y = p]f1 ...pfs is a prime decomposition, then as Z-modules
2h
Hy(S*-K)=G/G" = (P z[c§"]
i=1

iﬁcj =0 (mod p;) foralli=1,...,sand j=0,...,h—1.

Remark 3.20. There is a structure theorem for finitely generated Z[t,t ! ]-modules M with
no Z-torsion (such as the first Alexander module of a knot complement) in [26]. There
exists a pair U, B of finitely generated abelian groups and monomorphisms f,g: U — B
such that M is isomorphic to the infinite fibered coproduct

"'EBUBEBUBEBU"'

with identical amalgamations B Eu i> B, and (t) acts on this by shifting coordinates
to the left or right. If U is generated by g elements, then deg A(M) < g. If M is the first
Alexander module of a knot complement and Ag(t) has breadth d, then U,B = 7% and
Ak (t) = det(tg — f). Compare this to Section 3.8, where U = H;(X) for a Seifert surface ¥
and B = H,(S® - X); then f, g are the induced maps from both pushoffs of ¥ into S3 - ¥.
sec:fox-calc
3.3. The Fox calculus. In [11], Fox defines a way to compute the presentation matrix

for Hy(X). In particular, the Fox free calculus gives a way to compute the entries of a
matrix for the chain map d, for a finite CW chain complex whose homology gives H;(X).
For a section called “The Fox calculus,” we will be discussing his actual calculus very

little: it turns out that once one understands a good chain complex for X that there is a

DRAFT 2020/11/14 18:57:28



ALL THE WAYS I KNOW HOW TO DEFINE THE ALEXANDER POLYNOMIAL 11

somewhat more direct method to calculate this d, matrix. Nevertheless, at some point we
will mention Fox derivatives.

Since H,(X) depends only on G = 7;(X), we may as well use a presentation complex for
G=(g1,--,8s | Ry,...,R,). Recall that the complex X is given by

e A single 0-cell known as .

e A 1-cell g; for each generator g;.

o A 2-cell for each relator R;, where the attachment map is given by the sequence of
generators in the word.

Let f: G —(t) beihe abelianization. To construct C;(X), we can use the fact that all lifts
of cells in X to X are related by_the (t) action. Hence, we may identify the cells of X
with some distinguished lifts to Xg:

e Let  be any lift.
e Let g; denote the lift that starts from =.
e Let R; denote the lift where the boundary word starts from .

This gives an explicit isomorphism C;(X¢) = Z[t*']®,C;(X¢) as Z-modules. In particular,

o Co(Xg)=2Z[t*')(x),
o C1(Xg) =2Z[t*')(g1,..., &), and
o Cr(Xg) =Z[t*' (Ry,...,R,).

Now to determine the boundary maps. The first is d1(g;) = (f(g;) — 1)* since the endpoint

of g; in the lift is its value in the abelianization, by definition of X;.

The second boundary map is a bit more involved. In the lift of R;, we have to take into
account how each generator in its boundary must lift end-to-end in X;. These transla-
tions are determined by the abelianization of each prefix. In particular, if R; = gjel1 ...g]ik,

where €, = £1 for each ¢, then

k

9>(R;) = Zf (&) 8,8
=1

where in C;(X) we interpret g;! to mean —f(g;)g;, since —g; has the opposite orientation
from that of g; and f(g;) shifts the 1-chain so it “begins” at =.

ex:trefoil-torus
Example 3.21. The following illustrates the boundary of the relator in C;(Xg) for the
group G = (x,p | x* = p°).

oy |y > = 4{;?

X

) —

. 3 M s f}b
£ I t ¥ t + 1
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12 KYLE A. MILLER
Algebraically, d,(x?y~3) = (1+t3)x—(1+t>+t*)y. We also have d,x = t3—~1and 9,y = t* -1,
hence the group has the corresponding chain complex

1+13
—(1+t>+1t%

Z[til] Z[til]z [t3 —-1 tz B 1] Z[t+l

The kernel of 9, is those vectors (a,b) for which a(t3 — 1)+ b(t?> — 1) = 0. We can factor out
t — 1, so equivalently the equation is a(t? + t + 1) + b(t + 1) = 0. As these polynomials are
coprime, t+1|aand t?>+t+1|b,thusa = (t+1)cand b = (t>+t+1)c for c € Z[t*']. Hence,
ker d; is generated by (t+1,t>+t+1). The image of 9, is generated by ((t+1)(t>—t+1), (t>+
t+1)(t> =t + 1)). Therefore H, (Xg) = Z[t*']/(t> -t + 1).

Remark 3.22. The group in the preceding example is equivalent to that of the trefoil. Thus
Az (t) = t? —t + 1, like before.

Proposition 3.23. Extending d, to words in G in general, then
(1) da(1)=0;
2) if g; is a generator, d,(g;) = g;; and
(3) if wy and w, are two words in G, then az(wlwz) =dy(wy) + f(w1)da(w)).
These define d,. A corollary is that dy(w™") = —f (w)d,(w) for every word w in G.

We do not especially need the followmg deﬁmtlon but we have it here for complete-
ness. With it, the boundary map renders as d,(R; 1f g], where f is extended

to Z[G] — Z[t*']. This allows one to calculate a partlcular entry of the matrix for d, if
one so wishes. One can imagine the relationship as between total derivatives and partial
derivatives.

Definition 3.24. Let F,, = (g;,...g,) be a free group on n generators. The Fox derivative is
a Z-module map aig : Z|F,| » Z|F,] characterized by

ox;
° a— (51], and

0 J
13;’:’2 = %e(wz) + w22 a 2 for wy,w, € Z[F,]) and e(Y_; n;g;) = Y n;.

thm:alex-poly-is-elementary

Theorem 3.25. The AY(t) definition of the Alexander polynomial is equivalent to Alexander’s.

Furthermore, £q(H,(S3 — K)) is a principal ideal.

Proof. Recall the transformation of the Dehn presentation into “canonical form.” The
effect of this was that in the abelianization, s — t and x|,...,x;, > 1. We have d,(sx/s™!) =
s+tx.—s = tx] and d,(s(x])"'s!) = —tx, so the “formal linearization” of a relation R;in
canonical form is d,R;

/ ’ ’ )
txi—txj—i-xk—xg—O.

In particular, the “associated matrix” is the matrix for d,. The matrix for d; is given by
dis=t—-1 and alx; = 0, so the kernel is given by all chains with no s term. Hence, the
presentation matrix for H;(X) is the result of removing the s column of the associated
matrix. Since the resulting matrix is square, the GCD of & is simply the determinant of
this matrix. O
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3.4. Torus knots. The calculation from Example 3.21 can be generalized to all torus
knots. A (p,q) torus knot T, ; is, with p,q coprime, the curve with p/q slope on the bound-
ary of a tubular neighborhood of an unknot. As an application of the van Kampen theo-
rem, [15, Example 1.24] gives the presentation

(% =T, ) = (x,p | xPy ™).

The abelianization is x - t7 and y + tP. We have

alx =t1-1

81}} =tP -1

Dy(xPy )= (1 +t1+t* 4.+ FP D) — (14 P+ £2P 4t t(p—l)q)y
1-tP9 1 —tP1
X— V.

1—t4 1—tP

Since p and g are coprime, the polynomials ttp_—_ll and ttq_—_ll have no common factors (by the
theory of cyclotomic polynomials), so

e
kerd| =Z|[t ]<t_1x Y
Therefore,
(1=t (t-1)
LT )

3.5. The Wirtinger presentation. Another presentation for a knot from its diagram (and
better known) is the Wirtinger presentation. A basepoint is placed above the diagram,
and generators are given by conjugating meridian loops by straight-line paths from the
basepoint—only one generator per overstrand is needed. Relations are given by loops just
below crossings. See, for example, [15, Exercise 1.2.22] for a more precise description.

The abelianization has the nice property that each generator, with the correct choice of
orientations, is sent to t. Thus, dyp; =t — 1 for each meridian generator y;, and the kernel
of d; is generated by y, — py,..., i, — pt. By performing the substitutions y; = pipy! for
i # 1, akin to the “canonical form” for the Dehn presentation, then the Alexander module
is presented the matrix for d, with the column for y; removed—the remaining columns
are for y’z,...,,u;l). Remark 3.28 has the explicit calculation for d,.

A property of the Wirtinger presentation of a knot with # crossings is that any one of the
n crossing relations is a consequence of the n —1 others. Therefore, a square presentation
matrix for the Alexander module can be obtained from taking a Wirtinger presentation
of the knot and removing any row and column from the matrix for d,. (This explains why
the first elementary ideal tends to be used: £;,1(d,) = &;(H;(S3 - K)).)

Another property of the Wirtinger presentation is that, with it, it is fairly straightfor-
ward to see the following;:

thm:partial-symmetry

Theorem 3.26. Ag(t) = +t"Ag(t!) for some m

Proof. This is a simplification of [30]. Let mK denote the mirror image of K. Since there
is a homeomorphism S% - K — $% — mK, the groups 7;(S® - K) and 7;(S® — mK) are iso-
morphic. Take the Wirtinger presentation for 71, (S2 — K) as usual.
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VA j%
C c
abal'e ol ™! \J-‘

To think about mK, perform the reflection through the plane of the diagram, so in the
resulting diagram what happens is that all the crossings switch types. If we reflect the
basepoint through the diagram, too, then by reversing the direction of the nullhomo-
topic loop in the relations, a relation like abc~'b~! transforms to a~'b~!cb. Thus, sending

each generator to its inverse is a well-defined group homomorphism, and so H;(S3 — mK)

is isomorphic to H;(S3-K) as a Z[H;(S> — K)]-module. Therefore, Ag(t7!) is also the
Alexander polynomial for K. O

Remark 3.27. This is a special fact about knot groups. For example, consider the HNN
extension G = (a,b, p | pap~ = b?, ubp~! = a), whose abelianization is H;(G) = (t).

di(a)=0d1(b)=0

di(p)=t-1
do(pap 'b7?) = ta—2b
do(pbpta )y =th—a

Therefore, ker d; is generated by a and b and the presentation matrix for H,(X;) is

.

whose determinant is Ag(t) = t> - 2. This is non-symmetric, so it cannot be the group of a
knot complement.

remark:wirtinger-linear
Remark 3.28. We may as well be explicit here with the linearized Wirtinger relations.
Consider these diagrams for right-handed and left-handed crossings:

foa //\7,:?
Xy 2

The right-handed crossing gives the relation xz = yx, and the left-handed crossing gives
yx = xz. With this labeling convention, both give through J, the relation

(I-t)x—p+tz=0.

Or, z = (1 —t7!)x + t"1y, an affine linear combination. (This gives the structure of an
Alexander quandle, where this is represented by the operation z = x <y, for “y under x in
the meridian direction.” See Section 9.)
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3.6. Generalization to links. All of the preceding discussion of the Alexander polyno-
mial can be generalized to links. The group H;(S® - L) has rank equal to the number of
link components by Alexander duality. If we choose a map H,(S®~L) — Z corresponding
to some orientations of each component, then we may use this in place of the abelianiza-
tion to get Ay (t) for an oriented link.

Or, one can do everything for Z[H;(S®—L)]-modules, where this ring is a multivariable
Laurent polynomial ring, to get a multivariable Alexander polynomial.

Example 3.29. For a split unlink, the fundamental group is Z * Z with abelianization
Z®7Z. One can calculate H;(S3 - L) = Z[s*!, t*!], so Af(s,t) = 0.

Example 3.30. For the Hopf link, the fundamental group is G = Z® Z, so G’/G” = 0.
Hence A (s,t) = 1, the determinant of a 0 x 0 matrix.

3.7. Fibered knots. A knot or link L is called fibered if the complement S — v(L) fibers
over S'. (In other language: the knot or link is the spine of an open book decomposition
of S3, where the pages of the open book are the leaves of the fibering.)

The monodromy is a homeomorphism g : ¥ — ¥ for a compact surface with boundary
such that S® — v(L) is homeomorphic to the mapping torus

T, =[0,1]x X/(1,x) ~ (0, f (x)).
The fundamental group of a mapping torus is an HNN extension:
7(1(Tg) = T(l(Tg) *o, = <711(Tg),]/l | ﬂxl’l_l =g.(x) forallx € 7(1(Tg)>'
Since the fundamental group of a surface with boundary is a free group, the abelianiza-

tion of the HNN extension sends all of 7t;(T) to 1 and p to t, hence the kernel of d; is
generated by the generators of 7(Ty). We also have

Da(pxp ' g(x) 1) = tx - g.(x),
thus H;(S3 - L) is presented by

H,(S3-L) = H{(%;Z[t'])/(tx - g.(x) for all x).
Choosing a basis for H;(X) and letting A denote the matrix for g, : H;(X) — H;{(X), we see
that tI — A is a presentation matrix for the first Alexander module. Therefore,

Theorem 3.31. A;(t) = det(t] —A) for a fibered link, where A is a matrix for the map Hy(X) —
H,(Y) induced by the monodromy.

Corollary 3.32. The Alexander polynomial of a fibered link is monic.

Thus, it is a necessary condition for K being fibered that H;(S3 — K) is finitely generated
as a Z-module. Compare this to Theorem 3.19.

Since Ag(1) = +1 (Corollary 3.40), H;(S3-K) has no Z-torsion, so, if H(S3-K) is
finitely generated as a Z-module, it is a free Z-module. Using Theorem 3.19, Ag(t) is

monic iff H;(S3 - K) is a finitely generated Z-module.

Theorem 3.33 (Fibration theorem, [27]). Given a compact irreducible 3-manifold M, a finitely
generated group G not isomorphic to Z/2Z, and a short exact sequence 1 — G — (M) —
Z — 1, then M fibers over st
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Recall that M = S®—v(K) is irreducible by the Sphere theorem, so if G = [rt; (M), 71;(M)]
is finitely generated, K is a fibered knot.

Example 3.34. The following facts are mostly drawn from [28] and KnotInfo [2].

e 5, is not fibered since its Alexander polynomial is 2¢% — 3¢ + 2.

e The trefoil and figure-eight knots are fibered and A (t) =1 -t + t? and Ay (t) =
~1+3x-x2

e For <10 crossings, having a monic Alexander polynomial is equivalent to the knot
being fibered.

e The knot 11n73 has a nontrivial monic polynomial but it is not a fibered knot.

e For <11 crossings, having a monic Alexander polynomial whose breadth is twice
the genus is equivalent to the knot being fibered.

e The knots 11n34 and 11ny, (respectively the Conway knot and the Kinoshita-
Terasaka knot) both have trivial Alexander polynomial 1 and are not fibered.

Example 3.35. Torus knots are fibered. This can be shown through “Milnor fibers,” but it
also follows from Stallings’s result. Using the presentation G = 71;(S> - T, q) =%,y | xP =
p7), we can examine X of the presentation complex X;. The idea is that a closed loop in
the 1-skeleton of X corresponds to elements of the commutator subgroup. The relator
lifts to a loop that ascends through x’s then descends through y’s, and it has a certain
“height.” So, any loop in X; whose “height” is at least as great as that of the relator can
be reduced in height until its height is less. We only need to care about loops that do
not visit the same 0-cell twice (since otherwise they are a product of two simpler loops).
There are only finitely many such loops, essentially due to the fact that such loops come
from primitive solutions of a system of integer linear equations.

sec:seifert-presentation
3.8. Seifert presentation. Recall that a Seifert surface ¥ of an oriented link L is a com-
pact oriented surface such that d¥ = L and ¥ NL = JX. Seifert surfaces exist for many
reasons, for example because every link in S3 is nullhomologous so there is a nontrivial
class H%(S3,L) whose boundary is L; it is a theorem that all second homology classes can
be represented by embedded surfaces.

Proposition 3.36 ([20, Proposition 6.3]). Suppose ¥ is a connected Seifert surface. Then there
is a a unique non-singular bilinear form

B:H(S-%)xH,(X)—>Z

with the property that B([c],[d]) = lk(c,d) for any homology classes represented by oriented
simple closed curves ¢ and d.

Proof. This is Alexander duality. O
Definition 3.37. The Seifert form of a Seifert surface ¥ is a bilinear form
a Hl():) XH](Z) Y4

defined by a([c],[d]) = lk(c,i*d) for any homology classes represented by oriented simple
closed curves ¢ and d, where i* : ¥ — ¥ x {1} are the pushoffs using a homeomorphism
v(X)= X x[-1,1] for the embedded normal bundle.
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thm:seifert-square-pres
Theorem 3.38 ([20, Theorem 6.5]). Let A be a matrix for the Seifert form a of a connected

Seifert surface Y. of an oriented link L. Then tA — AT is a presentation matrix for H,(S3 - L).
In particular, Af(t) = det(tA — AT).

Proof. Choose a basis fi,..., f, of simple closed curves for H;(X), and let ey,...,¢, be a
corresponding dual basis of simple closed curves for H; (S - X). That is, Blei, fi) = 0ij.

Notice A;; = a(f;, f;) = 1k(f;,i" f;) = B(i" f;, fi) and A;; = 1k(f;,i" f;) = 1k(i" f;, f;) = B(i" f;, fi)
mean
itfi] = ZAij[ej] and i[f;]= ZAi]-[ei].
j i

One can construct S3 - ¥ by

e letting, for each i € Z, Y; denote a copy of S> —v(X) - v(L), then
e gluing the ¥ x {+1} side of Y;_; to the ¥ x {-1} side of Y; for all i.

This has (t) as the group of deck transformations by having t send a point of Y; to the
corresponding point of Y; ;.

Just like in Mayer—Vietoris, we can cut up chains so that they are sums of chains from
each Y;, and applying the Z[t*!] action we can represent every chain as being an element
of Z[t*']® C;(Y}), so every cycle can be written as a Z[t*!]-linear combination of cycles

from C;(Yy). Since the loops ey,..., e, do not intersect ¥, they lift to loops in S3 - ¥, so then
every 1-cycle is homologous to a Z[t*!]-linear combination of these loops. By duality,
we can also use fi,..., f,, (pushed off by i) in Y as a generating set for 1-cycles. Since
tfi]l = tli"f;] = LiAjjle;] and [fi] = [i7fi] = Zinj[ej]/ we can deduce tA;;[e;] = Ajile;],
so tA — AT is a matrix of relators for [e;],...,[e,]. With some more effort, one can check
that tA— AT is indeed a presentation matrix for H;(S3 —X), for example by appealing to
Mayer—Vietoris with Y' = Jgyen; Yi and Y =44, Yi- O

Corollary 3.39. For a link L, the genus satisfies 2¢(L) + ¢ — 1 > breadth A (t), where c is the
number of components in L and the breadth is the difference between the maximal and minimal
degrees of t.

cor:poly-at-1

Corollary 3.40. For K a knot, Ag(1) = +1.

Proof. Let ¥ be a connected Seifert surface for K, which is a once-punctured genus-g
surface. Choose a symplectic basis for H;(2), which is a basis fi, f5,..., f24-1, f2¢ such that
the algebraic intersection number has a matrix that is block diagonal, with each block

being the 2 x 2 matrix l(l) _01]
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We have Ag(1) = +det(A —AT). Notice (A—AT)Z-]- =1k(f;, i"f;) = 1k(f;,i" i) = Ik(i" f3, f;) —
Ik(i™ f;, f;), which is the algebraic intersection number of f; and f;. Thus det(A -AT) =

ol 4] :

Corollary 3.41. For K a knot, there is an Alexander polynomial representative such that
AK(l) =1 and AK(t) = AK(t_l).

3.9. Duality.

4. Tue CONWAY POTENTIAL

sec:conway-potential

In [4], Conway defined the potential function, now known as the Alexander-Conway poly-

nomial, a polynomial V[ (z) € Z|z] associated to oriented links L. It is completely deter-
mined by Vnknot(2) = 1 and the skein relation

where the three links are the same outside the sphere that contains the portrayed tangles.
(Note that this is an invariant of links, not of link diagrams!)

That this is well-defined takes some proof. One way to proceed is to use the fact that
every link can be unknotted by switching crossings bounded by the crossing number of
the link and inducting on crossing number. We will instead follow Conway’s lead and
connect it to a normalized version of the Alexander polynomial.

Conway reported that, by using his rational-tangle-based knot notation and this poten-
tial function, he was able to undertake the enumeration of all 54 knots up to 11 crossings
in an afternoon, rather than Little’s six years.

Remark 4.1. It was known to Alexander that there was a way to get a three-term relation
with some care [1, (12.2)]. The beauty of the Conway potential is that it is normalized
so linear relations automatically make sense. The substitution V;(t!/2 — t71/2), as the fol-
lowing theorem shows, gives the symmetric representative of the Alexander polynomial
of a knot. (That is, for a knot the substitution is in Z[t*!]!) A modern formulation of
Alexander’s approach will be described in Section 4.1.

Remark 4.2. The original Conway potential is multivariate, with each component of the
link being given its own variable; the single-variable case is when each component is
given the same variable. The multivariable version is defined by symmetry properties,
a component deletion formula, and a connect sum formula [4, Section 6]. He gives the
above skein relation (between two strings with the same variable) as a consequence, along
with another skein relation between two strings with different variables. He writes that
“we have not found a satisfactory explanation of these identities, although we have verified
them by reference to a ‘normalized” form of the ‘L-matrix’ definition of the Alexander
polynomial, obtained by associating the rows and columns in a natural way. [...] It seems
plain that much work remains to be done in this field.” This ‘L-matrix’ definition is given
in the following theorem, at least for the single-variable case.
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Theorem 4.3. Let A be the matrix of the Seifert form for a connected Seifert surface for an
oriented link L. Then Vi (tV/? —t71/2) = det(t'/2A — t71/2AT).

Proof. Every smooth connected Seifert surface can be represented as the regular fiber of a
map S3-v(L) — S!. Given two Seifert surfaces, by taking a stable representative of a fam-
ily I x(S3-v(L)) — S!, one can use Cerf theory to see that all Seifert surfaces are related
by a sequence of compressions (“embedded 1-surgeries”) and “de-compressions” (“em-
bedded 0-surgeries”). With a little care, we can make sure that the Seifert surfaces remain
connected throughout these operations. So, all we need to do is check that compressing a
Seifert surface leaves det(t'/2A — t~1/2AT) invariant.

Let D be a compression disk for a connected Seifert surface ¥, where the compressed
surface X’ is connected. Choose a basis for X by taking dD as one curve f; then extending
it to a symplectic basis, with f, being the curve that intersects f; with algebraic intersec-
tion number +1.

I,

X | ) i:'

T

Then with the appropriate orientations, the Seifert matrix Ay of ¥ can be written in terms
of the Seifert matrix Ay, of X”:

0 0]0 0
1 ¢cy|c3 Cy
Ay =| 0 =
E AZ/
|0
With
1 —c, =
1
P = ,
1
we have
0 0|0 0
1 0|0 0

PAyPT=| 0 =

L O *

This P is a basis change for a bilinear form, and replacing Ay by PAyPT in the determi-
nant just multiplies the determinant by det(P)? = 1, so we can assume the Ay is in this
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new form. Then, since

0 —+12]0 0]
t1/2 O * “ee *
tl/ZA): _ t_l/zAg — 0 * ,

tl/ZA):/ _ t—l/ZAg/

| 0 * |
when we expand the determinant along the first row then the first column, this reduces
to det(t'/?Ay, — 7V 2Ag,). Therefore, the determinant is an invariant of the link. O

Corollary 4.4. If L is a split link, then V(z) = 0. More generally, if L bounds a disconnected
minimal-genus Seifert surface with no sphere components, then V(z) = 0.

Proof. There is a connected Seifert surface for L which has a separating simple closed
curve. This means t'/2A —t1/2AT has a row and column of all 0’s if we take that curve as
part of the basis for H;. O

Corollary 4.5. If K = Ky # K;, then Vg(z) = Vg, (2)Vk, (2).

Proof. Given Seifert surfaces ¥; and X, for K; and K, respectively, one gets a Seifert
surface ¥ for K by joining them along an arc in the boundary. A basis for H{(X) = H,(X;)®
H,(X,) is given by the concatenation of bases for each. Thus, the Seifert matrix for K is

_ | Ak
AK—l 1AKzl.

The result follows. U

sec:alexander-three-term
4.1. Alexander’s three-term relation. In this section, we go through a generalization
of Alexander’s observation from [1, (12.2)]. We will take an operad or planar algebra
approach to Alexander modules for certain manifolds with corners.! It should be said
that all of this will be a long-winded way to say that we can make square presentation
matrices for the Alexander modules for the three knots appearing in the Conway skein
relation so that they are the same but for their first rows, and since the sum of their first
rows will be 0, therefore their determinants sum to zero by multilinearity.

First, let us revise the construction of the first Alexander module to use homology with
local coefficients (see [15, Section 3.H]). Let M be a compact manifold with a homo-
morphism f : 7;(M) — (t). The group ring Z[(t)] = Z[t*'] is a (Z[rr;(M)], Z[r;(M)])-
bimodule, where the action is given by multiplication by the image through f. Define a
chain complex C,(M; Z[t*']) = Z[t*' ]| ®z[5, (M) C,(M) with boundary maps d®id, where
M — M is the universal cover. The homology H,,(M;Z[t*']) of this complex is a case of ho-
mology with local coefficients. (In general, any right Z[m(M)]-module may be used as the
local coefficients.) Due to the bimodule structure, the homology groups are themselves
Z[t*']-modules.

Notice that for p(t)® o € C,(M;Z[t*!]), if g € ker f then p(t)® go = p(t)® 0. Thus, if
M — M is the infinite cyclic cover associated to f (where if f is not surjective then M is a
disjoint union of a copy of M for each element of (t)), then C,,(M;Z[t*']) = C,(M). Hence,

1T wonder if one might potentially be able to cast something like this as a “topological field theory.”
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in the case that f is the abelianization map, H,(M;Z[t*']) is isomorphic to H,(M;Z) as
Z[t*']-modules.

Definition 4.6. For k € Z, let S,f denote the k-times punctured 3-sphere, a compact ori-
ented 3-manifold that is homeomorphic to the result of removing from the 3-sphere k
open balls whose closures are disjoint.

Definition 4.7. A tangle is a properly embedded? compact oriented 1-manifold T in some
Sl‘:’ such that each component of 952 has an equal number of elements of dT with positive
and negative orientations.

Tangle equivalence is isotopy of T rel dT. The constraint on boundary orientations
exactly characterizes tangles as being the result of taking an oriented link L in S3 then
removing some number of balls whose boundaries intersect L transversely. Tangles have
planar diagrams just like links, but the diagrams are given on punctured S?, with each
boundary component of the diagram corresponding to a particular boundary component
of S,f. When working with planar algebras, it is customary to put one of the punctures at

infinity. Por example, here is a tangle in S5:

To be perfectly clear with these diagrams, we ought to (1) label each boundary component
and (2) establish a convention on the identities of each boundary point of dT (for example,
mark one boundary point as “first” then require the orientations to alternate +/— as one
goes around a boundary circle).

There is a composition law for compatible tangles, where two tangles are glued along a
chosen pair of boundary components in a way that respects all orientations and connects
up their respective 1-manifolds. What we are going for is that the skein relation for the
Conway polynomial can be put in terms of compositions of pairs of S? tangles with four
boundary points each.

Let (S]f, T) be a tangle. The same sort of argument that gives the Wirtinger presentation
of a link complement also works for ; (S,f —T), giving a group presentation with meridian
loops as generators, but in addition to relations from crossings there is one additional
relation per boundary component—these are loops that parallel boundary components
in a diagram, sitting just underneath each strand of T. Then there is a homomorphism
f: 711(8;’, T) — (t) sending each meridian to t using orientation of the tangle. Thus, we
have an Alexander module Hl(Sl‘:’ — T;Z[t*!]) for the tangle. [For another approach, we can
calculate H! (S,f —T) using Alexander duality by recognizing that S,f ~-T=8>—(Tu U?:l B;), where the B;
the balls for which SI? =53- Ule B;. The space TU Ui‘{:l B; is homotopy equivalent to a graph with oriented
edges. As a trick, fill in each boundary component of the tangle in some way to get a link (S3,L). There is

2In 3-manifold topology, T is properly embedded in M iff T is embedded in M and M NT =JdT is a
transverse intersection.
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an element of Hl(S3 — L) that calculates the linking number with L (as, say, the Poincaré dual of a Seifert
surface for L). The restriction of this element to « € HI(S,f, T) is the one that calculates linking number
with T, so there is a homomorphism f : 1t; (S,f —T) > (t).]

Consider a boundary component ¥ C 852. There is an Alexander module H; (¥ —
dT;Z[t*']) of this boundary, too, with the homomorphism 7, (X — dT) — (t) from compo-
sition with the induced map 7t (X -9JT — S,? —T).3 To take into account all the peripheral
Alexander modules, we give the following definition:

Definition 4.8. The precise Alexander module of a tangle (S,“:’,T) is the following data:
the module Hl(SI‘:’ — T;Z[t*']), the peripheral Alexander modules H;(X; — dT;Z[t*!]) for
¥4,...,X the boundary spheres of S?, and the map

k
@Hl():,- —9T; Z[*])) - Hy(S? - T; Z[+*1))
i=1

induced by the inclusions ¥; — dT — Sf —T. (We have not been too careful about base-
points: technically, we must choose a basepoint for each boundary component of S,f and
a path from each to the basepoint of Sl‘:’ itself, all of in the complement of T.)

We will now work out how to compute the precise Alexander module of the composi-
tion of two tangles. Let (Sf’, T) and (S,f,, T’) be two tangles that can be composed along
some boundary components ¥ C dS} and ¥’ € dS?, and let (S7,,, ,,T U T’) denote the
composition. That is, there is some orientation-reversing homeomorphism h : ¥ — ¥’
carrying each boundary point of XN dT to a corresponding point of ¥’ N JdT’, again with
reversed orientation. Suppose also that XN dT is nonempty. The claim is that the Alexan-
der module of the composition is the fibered coproduct*

Hl(slf+k’—2 - T U T’;Z[til]) = H](Slf - T;Z[til]) @Hl(z_a’r;z[til]) Hl(ss, _ T/;Z[til]).

Consider each of these Alexander modules as being the homology of an infinite cyclic
cover. Then the homology of a composition of tangles can be computed using the reduced
Mayer—Vietoris sequence:

Hy(X) - H\(S} -T)®H,(S}, - T") > H\(S},,,_,~TUT’) - Hy(Z).

Since we assumed XNdT was nonempty, X is connected so Hy(X) = 0. Thus, the Alexander
module of the composition is the fibered coproduct as claimed. The precise Alexander
module of the composition is from taking this fibered coproduct along with the set of
Alexander modules for each of the remaining boundary components of both tangles.

Let us compute the precise Alexander modules of the following three tangles in S3:

31f we identify ¥ with the Riemann sphere and let cy, ..., ¢, be the points of dT NX with respective orien-
tations €y,...,€,, then applying the argument principle to [T/, (z—c;)¢ on £ —dT gives the homomorphism
to Z.

4Recall: a fibered coproduct or pushout A @y C with two maps f : B— A and g: B — C is the quotient
(A® C)/{(f(b),0)—(0,g(b)) for all b € B}.
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le '[: T°=

These are all examples of rational tangles (defined by Conway in [4]), which are tangles
(S?,T) characterized by S? — T being homotopy equivalent to a space that is the union of
S2 —{four points} and a disk whose boundary separates the four points into two groups of
two points; or, equivalently, that (513, T) is isotopic to (513, Tp) while allowing the boundary
points to move freely. While the Alexander modules for these are all the same, the maps
H, (X -9T;Z[t*']) - H,(S} - T; Z[t*!)]) are all different.

The boundary ¥—0T is a four-times punctured 2-sphere, so 71y (X—dT) is a free group on
three generators. Concretely, with the generators as in the following diagram, we have a
presentation {(a,b,c,d |a~'b~'cd = 1) for 7t (X-0T), and the homomorphism 7t} (X -0T) —
(tyis given by a,b,c,d — t.

(A way to construct ¥ — dT is to slice ¥ — dT open along two disjoint arcs that connect a +

to a —, take a Z’s worth of them in a stack, then glue sides of arcs together so that a path

going counterclockwise around a + point goes from level n to level n + 1, just like in the

construction of the infinite cyclic cover using a Seifert surface, but down a dimension.)
We have that d; of each generator is t — 1 and that

@b ted)y=at + 70 4 72+ 7 d = 72 (—ta— b+ c+ td).

Let K C Z[t*'](a,b,c,d) denote the kernel of d;, which is those elements x; a+x,b+x3c+x4d
such that x; +x, + x3 + x4 = 0. Then H,(X - dT;Z[t*']) = K/(—ta— b + c + td). [Letting a’ = q,
b’=b-a,c’=c—a,and d’ = d —a, the relation is td’ + ¢’ — b’ and K is generated by b’,¢’,d’, which implies
H (X -0T;Z[t*')) = Z[t=' (b, ', d")/(td" + ¢’ - V') = Z[t*1]?.]

Gluing a disk into X —dT whose boundary separates the four punctures into two groups
of two has the effect of adding an additional relation to the Alexander module. For ex-
ample, with T the disk is glued along the path b~!c. Since d,(b~'c) = -t1b+t7\c,

Hy (S} - Ty; Z[t'])) = K/(t(d —a) + c = b,c - b).
For T,, the disk is glued along ca™!. Since d,(ca™!) =c—a,

Hy(S{ - T,; 2[t*]) = K/(t(d —a) + c— b,c —a).
Lastly, for T_, the disk is glued along db~L. Since 82(db_1) =d-b,

Hy(S; - T;Z[t*']) = K/(t(d —a)+c—b,d - b).

At this point, notice that t(c —a)+ t(d —b)+ (1 —t)(c — b) = t(d —a) + ¢ — b. This underpins
Alexander’s three-term relation.

DRAFT 2020/11/14 18:57:28



24 KYLE A. MILLER

Given a diagram of a link L with n crossings, by removing every crossing we get a
tangle T in S2, and S2 - T is homotopy equivalent to the complement of a 4-regular graph
in S3. The Wirtinger presentation of this tangle has one meridian generator per edge of
this graph, and each removed crossing gives a relation like a~'b~!cd = 1, like our recent
calculation of 71;(S? — four points). Like usual for the Wirtinger presentation, any one
of these relations is a consequence of the other n — 1 relations. Reversing this: we may
start with a planar 4-regular graph with edges oriented so that every vertex has an equal
number of incoming and outgoing edges—this is a tangle (S2, T). Then for each vertex we
may choose a rational tangle to insert there, giving a link L.

The Alexander module for L is the fibered coproduct of the Alexander module of (S, T)
along with all the Alexander modules for each of the vertex tangles. Since the relations
for the Alexander module for (S, T) are already distributed among the modules for each
of the vertices, all H,(S? — T;Z[t*']) does in the fibered coproduct is to “join up” cor-
responding meridians for each module. Thus, the Alexander module for S3—L can be
described as follows. Let ay,...,a,, denote the meridian generators for SS — T, and let K
be the kernel of the map Z[t*'|{ay,...,a5,) — Z where a; — 1. Then a matrix for d, can
be given by the n rows corresponding to the t(d —a) + ¢ — b elements followed by n rows
for the specific relation for each vertex, which for Ty, T,, and T_are c—b,c—a,and d - b,
respectively. Thus, d, has an 2n x 2n matrix, though any one of the first n rows may be
removed.

A generating set for K can be obtained by taking a’ = a; —a; for all 2 <i < 2n. Then,
for example, t(d —a)+c—b=1t(d'—a’)+c’ —b’. After removing one of the first n rows then
rewriting in terms of this basis, d, is a (2n—1) x (2n — 1) matrix.

Each choice of T,, T_, or Tj at a particular crossing gives three matrices with the corre-
sponding row corresponding to that tangle’s relation. Since t(c—a)+t(d—b)+(1-t)(c-b) =
t(d —a)+c—b, by multilinearity of determinants, we have with this choice of presentation
matrices that

tAL+(f) + tALi(t) + (1 — t)ALO(t) =0,
since t(d —a) + c — b after the basis change is a linear combination of the other rows in the
matrix.

Remark 4.9. It would be nice to have a formula for the Alexander module of a general
rational tangle. There also seems to be a good amount to say about using the decompo-
sition from bridge position into two tangles. I would hope for something about the exact
structure of the Alexander modules (like, what, geometrically speaking, causes the higher
elementary ideals to be nontrivial?).

5. Tue HOMFLY-PT poLYNOMIAL

Immediately after Jones introduced his 1-variable polynomial invariant of links in
[16], five groups of mathematicians (Freyd-Yetter, Lickorish-Millet, Ocneanu, Hoste,
and Przytycki-Traczyk) independently discovered a 2-variable polynomial invariant that
specialized to both the Alexander polynomial and the Jones polynomial. The first four
groups combined their results into a single paper [13], from whom the first letters of
each of their last names were borrowed to name the HOMFLY polynomial. Due to slow
postal service, [23] did not arrive in time to be part of the paper, so it is also known as the
HOMEFLY-PT polynomial to recognize the work of Przytycki and Traczyk.

DRAFT 2020/11/14 18:57:28



ALL THE WAYS I KNOW HOW TO DEFINE THE ALEXANDER POLYNOMIAL 25

From a skein-module-like point of view, the HOMFLY-PT polynomial arises from the
following construction. Let &£ be the Z[a*, z]-module freely generated by isotopy classes
of nonempty oriented links in S°. Let & be the quotient of & by the skein relation

OLV\ — o 7\ = ZH

where the three links are the same outside the dotted circles (each dotted circle represents
an S? that intersects the link in exactly four points, where one side of that sphere is one of
the three rational tangles pictured). One can show that & = Z[a*, z]-unknot by induction
on the number of crossings in the diagram (see [20, Chapter 15] for a complete proof).
The HOMFLY-PT polynomial P, (a, z) is from setting the value of the unknot to 1 (or, from
taking the value of L in the quotient &/(unknot — 1) = Z[a*, z]).

Remark 5.1. The substitution a =1 gives the Conway potential from Section 4.

Remark 5.2. There are many parameterizations of the HOMFLY-PT polynomial. Essen-
tially, the HOMFLY-PT polynomial is a homogeneous 3-variable polynomial which can
be deprojectivized in any number of ways to yield a 2-variable polynomial. For example,
if L, L_, and L are the three links from the skein relation, any of the following skein
relations give a version of the HOMFLY-PT polynomial that appears in the literature:

e al, —a'L_=zL, (from above, for completeness)
o (L .+ 'L _+mLy=0
e xL, +yL_+2zLy=0

The original approach to the Jones polynomial was to take a braid whose closure was a
given link, feed it through a new braid representation from subfactors of von Neumann
algebras, then take a trace of the resulting linear operator. Turaev in [31] extended this
to representations of affine Lie algebras of various types, and one particular case is link
invariants from the fundamental representation of the quantum group U, (sl(N)). Inter-
estingly, the resulting link invariant is characterized by the skein relation

VL, —-q VL =(9-q")L,,

which with the substitution a = g and z = g — ¢! is the HOMFLY-PT polynomial. That
is, the HOMFLY-PT is an interpolation of the U/, (sl(N)) invariants for all N € Z,!

The Alexander polynomial then is, mysteriously, the quantum invariant associated to
“Uy(s1(0)).” (I have been told that it is possible that this might be identified with the
invariant for U, (gl(1|1)), which is the quantum deformation of the universal enveloping
algebra for the superalgebra gl(1]1). See [25] for a description of the Alexander polyno-
mial as a U, (gl(1|1)) quantum invariant.)

Remark 5.3. The Jones polynomial is the U,(sl(2)) invariant from the fundamental rep-

resentation, and in the usual parameterization it corresponds to the substitution a = ¢~}
and z = t1/2 - t71/2 in the HOMFLY-PT polynomial.

Remark 5.4. At N =2 and q =i, the skein relation becomes
L,-L =-2iL,.
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This is the Conway potential at z = —2i (and, incidentally, an evaluation of the Jones poly-
nomial). Murakami showed that the general Alexander polynomial comes from quantum
invariants of other representations of I/, (s[(2)) at g = i. See [32] and its references.

6. KAUFFMAN STATE SUM

By carefully considering Alexander’s original definition, Kauffman devised a state sum
model for the Alexander polynomial in Formal Knot Theory [19] (with a 2006 supplemen-
tary paper [18]).” Links are treated completely combinatorially as diagrams. The shadow
of a diagram is a four-regular planar graph that he calls a link universe. The data of a
link universe is the underlying abstract graph along with the rotation system at each ver-
tex, which is the counterclockwise order of incident edges at each vertex. Elsewhere in
mathematics, link universes are known as four-regular planar combinatorial maps.

Recall the construction of the associated matrix from the Dehn presentation, whose
rows come from the rule illustrated in Figure 3. The original version of the associated
matrix was an n X (1 + 2) matrix with one column per region, and in our exposition we
removed the column associated to the “outer” region. To calculate the Alexander polyno-
mial, Definition 2.6 says to also remove a column associated to a region neighboring the
“outer” region, so now we have an n x n matrix A—call both the “outer” region and the
chosen neighboring region the starred regions. Consider the expansion

detA = (—1)Gal’a(l)"'an’o-(n)-

Each nonzero term in this summation corresponds to a choice at each crossing of an un-
starred region such that no region is chosen by two different crossings. Kauffman indi-
cates these states on a link universe as a collection of markers between two incident edges
at a vertex. For example, Figure 4 shows the three states of a trefoil universe (with the
starred regions indicated by asterisks), and the markers are indicated by quarter circles
at crossings. The rule from Figure 3 is used to label corners of regions in the link universe
as in Figure 5.

Ficure 4. The three states for a trefoil universe.g: irefoil-universe-states

Hence, the Alexander polynomial is the sum over all the states of the products of the
weights at each of its markers, times the sign of the permutation corresponding to that
state. Up to a global value € = 1, for a state S associated to a permutation o € S”,

’In my “just so” story, his work with state sums put him in a unique position to spring into action when
the Jones polynomial would appear two years later, where he immediately came up with the Kauffman
bracket formulation. However, I am told that the Kauffman bracket was something he came up with for
another purpose, and only later did he recognize it computed the Jones polynomial.
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Ficure 5. Alexander weights for a link universe.

fig:alexander-universe

Ficure 6. A black hole. fig:black-hole

et

Ficure 7. The Clock Theorem says every pair of states is connected by a
sequence of these “clock moves.”

fig:clock-move

the sign (=1)7 is €(~1)"S), where b(S) counts the number of markers that are black holes
(Figure 6)—this follows from [19, The Clock Theorem| (pictured in Figure 7). Therefore,

A=) (-1)"OKL]S),
S
where the sum ranges over all states of a marked link universe for L, and (L | S) is the
product of all the Alexander weights at the markers for S.

Example 6.1. The trefoil knot has the following labeled link universe:

The three states in Figure 4 give values of (K | S) of t, t2, and 3, respectively. The num-
bers of black holes in each state are respectively 0, 1, and 2. Therefore the Alexander
polynomial of the trefoil is t — 2+ > = t(1 — t + t2).

By the Clock Theorem, one can show that using the weights ¢,1,1,1 instead of t,—,1,-1
gives the same polynomial, up to an overall multiplication by +1. Dividing the weights
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by t1/2 gives t1/2,+1/2,+71/2 +=1/2 which changes the polynomial only by a factor of some
power of t'/2. Again by the Clock Theorem, weights at locations that are between oppo-
sitely oriented arcs can be set to 1, changing the polynomial by a factor of some power of
t1/2. The resulting weights are illustrated in Figure 8.

Theorem 6.2. The state sum for the weights in Figure 8 is a polynomial in Z[t*!] that is
invariant under the Reidemeister moves, and it coincides with the Conway potential (Section 4)
with the substitution z = t71/2 — t1/2,

X”’"
/

/

FiGure 8. Renormalized Alexander weights.. ..., weignis

renormalized

Example 6.3. The knot determinant is the value |[Ag(—1)|. It governs whether nontrivial
Fox n-colorings exist for a knot, which group theoretically are homomorphims 7t;(S% -
K) — D,, to the dihedral group such that meridians are sent to flips of the n-gon. The flips
in D, can be associated to elements of Z/nZ, with 7, for k € Z/nZ being a flip composed
with a rotation by 2mk/n. Flips 7; and 7; indexed by i,j € Z/nZ satisfy TiTjTi_l = i
This is the sense in which it is a “coloring”: if in a knot diagram we place elements of
Z/nZ (“colors”) on each arc so that at each crossing the elements satisfy 2i = j + k, with
i the element for the overstrand and j, k the elements for the two incident understrands,
then by the Wirtinger presentation there is such a homomorphism to D,,.

Instead of coloring arcs of a diagram, we may also n-color regions. A region n-coloring
is an assignment of values of Z/nZ such that at each crossing

the coloring satisfies A+ B = C+D. Letting x=A+B,y=B+C, and z= A+ D, then
2x = y +z. Given an edge coloring with a choice of color for the “outer” region, the
remaining regions can be uniquely colored. We will use the convention that the “outer”
region is colored with 0. A fact about Fox n-colorings is that they form an abelian group
under arc-wise addition, so by adding a constant coloring to a given coloring we can
assume any particular arc has any color we wish. In particular, there is a Fox n-coloring
such that in the corresponding region n-coloring both the starred regions are colored with
0.

DRAFT 2020/11/14 18:57:28



ALL THE WAYS I KNOW HOW TO DEFINE THE ALEXANDER POLYNOMIAL 29

At t = -1, the t,£,1,1 Alexander weights are —1,-1,1,1, which for the above crossing
corresponds to the equation A+B = C+D. The determinant [Ag(—1)| is the determinant of
the matrix for this system of equations, with the columns for the starred regions removed
(corresponding to those regions being assigned the color 0), and the determinant is an
obstruction to the existence of a non-trivial solution:

Theorem 6.4. Nontrivial Fox n-colorings exist iff n divides |Ag(—1)|.

Proof. If n divides |Ag(-1)|, then the determinant vanishes modulo n, giving nontrivial
region colorings, and therefore nontrivial Fox n-colorings. O

Example 6.5. Every link diagram’s regions can be 2-colored so that every pair of neigh-
boring regions is given a different color. A checkerboard graph (or Tait graph) is a graph
formed by taking all regions of the same color as vertices then connecting pairs of vertices
by an edge if they are across from each other through a crossing. If K is an alternating
knot with an alternating diagram, then |[Ag(—1)| is also the number of maximal trees in
a checkerboard graph. This comes from seeing that at t = —1 each state contributes the
same sign in the state sum.

6.1. Another state sum. Instead of using the Dehn presentation, we can also use the
Wirtinger presentation.® Let us consider the exact presentation from Remark 3.28. Indi-
cate on a knot diagram the removal of a row and column by putting a star on a crossing
and on an arc. For each crossing, we place the weights on the three arcs at that crossing
as follows:

I-E
_..--E_:" -

A marker is a dot drawn on an arc near a crossing, and a state is a collection of markers on
unstarred arcs such that every unstarred crossing has exactly one nearby marker. (From
the crossing’s point of view, a marker is placed on one of the three incident arcs, and
in a state each unstarred arc receives exactly one marker.) If we star a crossing and its
overstrand arc, then we can place the star as if it were a marker in a state. To a state, we
associate a value which is the product of all weights at the markers.

In the expansion of the determinant for the Alexander polynomial, each state is a subset
of unstarred arcs such that for each unstarred crossing, only one of its incident arcs is
selected (chosen arcs are allowed to be incident to a crossing twice, like in a Reidemeister
I loop). We can indicate a state by drawing dots on arcs.

7. THE BURAU REPRESENTATION
8. VASSILIEV INVARIANTS
9. THE ALEXANDER QUANDLE

sec:quandles

This section is not complete.

®Warning: this does not seem to go very far, which might be why I have not seen it done.
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Quandles are an algebraic structure that were introduced by Joyce in [17] to describe
a complete knot invariant (up to orientation-reversing mirror image). The structure had
been independently discovered by Takasaki, Conway—Wraith, and Matveev either before
or contemporaneously.
Let X be a set acted upon by a group G. An (augmented) quandle is a function 1: X — G
such that, for all x € X and g € G,
(1) g/\xg_l = /\gxi and
(2) Ayx=x.
For a rack, the second axiom is omitted. If G is generated by A(X), then this matches the
usual definition of a quandle, where the first axiom can be written as A, A, = /\/\yx/\y' Or,
with the notation y <x = A, x (“x under y”), then, for all w,x,y € X, with g = A, we have

y<a(x<w)=(y<x)<(y <w),

displaying < as a “self-distributive” binary operation. Quandles are sometimes called
the “algebra of knots,” and the axioms can be represented graphically as in Figure 9, in
anticipation of Definition 9.2.

A

X< k A / Xa'(xay) X
RT) p = R) mp = }
x X " \y A

aylalxae) Xaz

—_— \——f—2

xdv\ X W\s X
KE[) X <(ya2) \ Xay
Y4z
X h|

i\

\

X Y

Ficure 9. Quandle axioms portrayed as Reidemeister moves. The second
Reidemeister move represents the group action. fig:quandle-reidemeister

A homomorphism between quandles A: X - Gand y:Y — Hisa function f : X - Y
and a homomorphism F : G — H such that F(A,) = ps(y) and f(gy) = F(g)f (¥). If G and
H are generated by A(X) and u(Y), respectively, then all that needs to be checked is that
fly<x)=fy)<f(x).

Every group G has an associated conjugation quandle ¢ : conj(G) — G given by conj(G) =
G and cgh = ghg™!. Quandles have a natural homomorphism to the conjugation quandle
of their underlying group. The universal conjugation quandle for a quandle X is the
conjugation quandle of the associated group Adconj(X) = ({g, : x € X} | gxgyg;1 = 8\y)
that factors X — conj(G) by x — g, and g, — A,.

Example 9.1. Quandle structures show up in some familiar places.
e A group acting on itself by conjugation is conj(G).
e For G a Lie group and g its Lie algebra, the composition of exp : g — G and
Ad : G — Autg forms a quandle g — Autg. The second axiom is that Adexp(x) X =
exp(ad,)x = x.
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e A Riemannian manifold X is a symmetric space if it is connected, if Isom(X) acts on
X transitively, and if there is an isometry @ such that ®? = idyx and ® has at least
one isolated fixed point; by translations, there is then such a @, for each x € X with
®,x = x. (Every such space is isometric to G/K for some connected Lie group G
with a compact subgroup K, where @ corresponds to an involutive automorphism
of G for which K is an open subgroup of its centralizer in G.) An example is the
n-sphere S" with Isom(5"”) = O(n + 1) and @, being reflection through x, which is
a matrix that is similar to

1
-1

-1

The function X — Isom(X) given by x — @, forms a quandle.

def:fundamental-quandle

Definition 9.2. Let L be an oriented link, let T = dv(L) be the boundary of a closed tubular
neighborhood of L, and let » € S3— v(L) be a basepoint. Let Q(L,*) be the set of all paths
[0,1] = S3—v(L) from * to T up to homotopy (allowing the endpoint to roam freely on T).
The group 14 (83 —L,%) acts on Q(L,*) by the usual concatenation of paths. For each point
x€T,let u, C T be ameridian loop with basepoint x that has linking number +1 with L.
Define A : Q(L,*) — 111(S>—L,*) by [p] + [p- iz - P], where overline means to reverse a path
(see Figure 10). This is the fundamental quandle of L.

Ficure 10. The quandle operation for the fundamental quandle constructs
the path that is on the other side of the crossing, in the overstrand’s merid-
ian direction. fig:quandle-knot-op

Remark 9.3. If we take a diagram for a link L, then if we take * to be a point above the
diagram, Q(L,*) is generated by straight-line paths from * to each overstrand. Notice that
the relations in Adconj(Q(K)) then include all the Wirtinger relations, so the associated
group is isomorphic to 771 (L,*). Hence, Q(L,*) remembers 7t1(L,*) even if we forget the
particular group action by passing to the quandle Q(L,*) — Adconj(Q(K)).
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Remark 9.4. The fundamental rack for a framed oriented link L is instead paths from * to
a system of longitudinal curves on T.

Theorem 9.5. For K an oriented knot, Q(K, *) is a complete invariant of K up to orientation-
reversing mirror image.

Proof. As discussed in the remark, from the quandle we can recover G = 7(K,*). Let

[p] € Q(K,*) and H = Stabg(p). Let T = dv(K) as in the definition of the fundamental
quandle.
e For g € (T, p(1)), the path (p-g-p)-p is homotopic to p. Hence 7t(T Up,*) C H.
e For g € H, since g-p ~ p, let h be a path from gp(1) to p(1) over the homotopy.
Then g = php € 7, (T Up,*).
Thus the stabilizer H is a peripheral subgroup.

Given a knot K’ with an isomorphic knot quandle, we obtain an isomorphism 7t;(S3 -
K) — 71;(S3 = K’) carrying H to a peripheral subgroup and a meridian to a meridian. Us-
ing the fact that knot complements are Eilenberg-MacLane spaces, there is a homotopy
equivalence S3 — K — S3 — K’ that induces this isomorphism. Waldhausen’s theorem [33]
applies, and one can conclude this homotopy equivalence is homotopic to a homeomor-
phism that is a restriction of a homeomorphism S — S3. Since the unoriented mapping
class group of S® is Z/2Z, then K is isotopic to either K’ or the orientation-reversed mir-
ror image of K. O

Remark 9.6. This works for non-split links as well. Consider the equivalence relation on
Q(L) generated by p; ~ p, if p; = A,p, for some g € Q(L). (A quandle is called algebraically
connected if there is exactly one equivalence class.) The equivalence classes are in one-to-
one correspondence with components of L. If we take one representative per equivalence
class, then the corresponding collection of stabilizers gives a system of peripheral sub-
groups and meridians for S — v(L), and, supposing L is non-split, the above argument
applies to show Q(L) characterizes L up to orientation-reversed mirror image.

Remark 9.7. Fenn and Rourke show in [10] that the fundamental rack of a non-split
framed link is a complete invariant up to orientation-reversing mirror image.

remark : quandle-group-form
Remark 9.8. Observe that if we choose * to be a point on the boundary torus T itself
then elements of Q(K,+) are equivalent to elements of 71;(S3 — v(K),*)/7;(T,*), cosets of
the peripheral subgroup. If we take the canonical meridian p € 71(T,*), then the map
Q(K,*) — 111(S® = v(K),*) as a map A : 70;(S> — v(K),*)/7c1(T,*) = 111(S> = v(K),*) is p >
py~p~l, which is well-defined because 7t; (T, *) is abelian. Then g)\pg_l =gpplplgl =
Agpand Ayp = pu tp~lp = pp~! = p (since the elements are cosets of 7t; (T, *)).

Definition 9.9. Let A be a Z[t*!]-module, and let Aff(A) := Autz+11(A) < A, where (x,a) €
Aff(A) corresponds to the affine transformation b +— xb +a. An Alexander quandle is a
quandle a : A — Aff(A) defined by a,(b) =t71b+ (1 - t~1)a.’

Consider Z[t*!] as an Alexander quandle, and suppose there is a quandle homomor-
phism f : Q(K) — Z[#*']. Then f(pp~'p~'q) = f(Apq) =t~ f(q)+ (1 = +~")f (p).

’This is often instead a,(b) = tb+ (1 — t)a, but +~! matches our meridian convention better.
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Given a quandle (Q, A), there is an associated Z[t*]-module A(Q) given by
AQ):=Z[t QY (A b=t b+ (1 -t Hafor all a,b € Q)

for which A extends to the quandle operation of A(Q) as an Alexander quandle. The map
Q — A(Q) given by a + a is a quandle homomorphism. Every quandle homomorphism
from Q to an Alexander quandle factors through A(Q).

The associated quandle A(Q(K)) is a sort of linearization of Q(K) of a type we have
seen before. Regard Q(K) from the point of view of Remark 9.8. If we take d, of A,(b) =
aptalb,weget \,(b)=a-ttu—tta+tb=tTo+(1-tNa-t"p

/\/\ab/\c = /\/\ac/\b

9.1. Projective Alexander quandles. Consider a field F that is a Z[t*!]-module, for ex-
ample Q(t), C(t), or C with t acting by some c € C.
The space FIP! of homogeneous points [a, b]

10. REIDEMEISTER TORSION

The following account of Reidemeister torsion largely comes from [21, Section 8]. Con-
sider a pair (K, L) of finite CW complexes with K connected. Choose a homomorphism
h : 11(K) — F* for F a field. This gives rise to a homomorphism Z[r;(K)] — F* that
factors through Z[H;(K)]. Let (K,L) denote the universal cover of (K,L). We can form
the chain complex C,; = F ®z[y, (k)] C.(K,L) using the action of 7t;(K) on (X,L) by deck
transformations. The torsion 7(C]) is an element of F*/{+1} (an element of K;F) up to
multiplication by h(m(K)). This ©(K, L) € F*/ + h(rt;(K)) is the Reidemeister torsion.

For a knot complement, 7(S3 — v(K)) = (1 — t)/A(t) for F = Q(t).

11. KnoTt FLOER HOMOLOGY
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