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A number a is called a quadratic residue, modulo p, if it is the square of some other number, modulo
p. That is to say, a is a quadratic residue if there is a b such that a ≡ b2 (mod p). A number is called a
quadratic nonresidue if it is not a quadratic residue.1

In one discussion section on Wednesday, I described how to use primitive roots to prove the following
fact:

Theorem 1. If p is an odd prime, then there are exactly p−1
2 nonzero quadratic residues (and p−1

2 quadratic
nonresidues).

For sake of the other discussion, and because primitive roots are a topic of the course, I’ll give the
primitive root argument later, but the purpose of this note is to explain another argument that doesn’t make
use of primitive roots that I came up with last night.

Another way to define a quadratic residue is that a number a is a quadratic residue if it has a square
root. That is to say, a is a quadratic residue if x2 ≡ a (mod p) has a solution, or equivalently if x2 − a has
a root modulo p.

Fact: every nonzero number a modulo p has either zero or two distinct square roots. Suppose a had a
square root b. Then x2 − a ≡ (x − b)(x + b) (mod p) is a factorization of the polynomial. The equation
(x− b)(x+ b) ≡ 0 (mod p), since p is prime, is equivalent to saying x− b ≡ 0 (mod p) or x+ b ≡ 0 (mod p),
so the only roots to x2 − a are x ≡ ±b (mod p). We know b 6≡ −b (mod p) since if b ≡ −b (mod p), then
2b ≡ 0 (mod p), and since gcd(2, p) = 1, b ≡ 0 (mod p), but b 6≡ 0 (mod p) since 0 6≡ a ≡ b2 (mod p).

So every nonzero quadratic residue has exactly two square roots, and (by definition) every nonzero
number squares to a quadratic residue. This implies that half of the nonzero numbers, modulo p, are
quadratic residues, which is to say there are p−1

2 quadratic residues.

More specifically, we know that b2 ≡ (−b)2 (mod p), so the numbers 1, . . . , p−12 represent all of the
nonzero quadratic residues. We know that they represent distinct quadratic residues since the only time
x2 ≡ y2 (mod p) is when x ≡ ±y (mod p), and the numbers in the list 1, . . . , p−12 are not negatives of each
other.

Since there are p− 1 nonzero numbers, that leaves p− 1− p−1
2 = p−1

2 quadratic nonresidues.

1 With primitive roots

A primitive root, modulo p, is a number α with the property that the list α, α2, α3, . . . contains all the
numbers 1, 2, . . . , p− 1 (modulo p).

The equation x2 ≡ a (mod p) can be rewritten as (αk)2 ≡ αn (mod p), where n is chosen so that a ≡ αn

(mod p), and where k is the unknown. The congruence is equivalent to α2k ≡ αn (mod p), and by Fermat’s
little theorem it is equivalent to 2k ≡ n (mod p− 1), since α 6≡ 0 (mod p). A homework problem concerns
congruences like this, and it says the solutions satisfy k ≡ n

2 (mod p−1
2 ) since gcd(p−1, 2) = 2. The fraction

n
2 might not be an integer, and in that case the solution is not satisfiable. Otherwise, this gives the value of

k modulo p−1
2 , so there are exactly two solutions modulo p− 1: n

2 and n
2 + p−1

2 . (Going back to the x ≡ αk

(mod p), then x is αn/2 or αn/2α(p−1)/2, where α(p−1)/2 ≡ −1 (mod p) since when squared it is 1.)
This is all to prove that there are either zero or two distinct square roots of a number, and then the same

counting argument follows.

1The word residue is old and refers to the remainder after division. The value b2 mod p is a quadratic residue.
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2 Finding quadratic nonresidues

It is extremely easy to find a nonzero quadratic residue: 1 is 12. However, it is less straightforward finding
a nonresidue; a reason one might want to find one is that the algorithm for computing square roots modulo
p requires finding some quadratic nonresidue. One way to find a nonresidue is to exhaustively list out all
squares and take a number which is not in that list, but this is not efficient.

Suppose we had an efficient method of determining whether a particular number is a quadratic residue or
not. By the fact that exactly half of the nonzero numbers modulo an odd prime are quadratic residues, we
can perform a randomized algorithm: choose a random number, check if it’s a residue. Since each attempt
has a 50% chance of succeeding, we would expect the algorithm to take two steps on average to find one.

There is, in fact, an efficient method of determining whether a particular number is a quadratic residue
or not, and that is using the Legendre symbol, which I will not discuss here.

3 Bonus: why is Fermat’s little theorem true?

The proof which makes the theorem most obvious uses group theory, and in particular Lagrange’s theorem.
In this section I’ll give a proof which is essentially using Lagrange’s theorem, but I won’t use any group
theory language.

Theorem 2. If a 6≡ 0 (mod p), then there is some integer n ≥ 1 such that an ≡ 1 (mod p).

Proof. Consider the sequence a1, a2, a3, . . .. Since there are only finitely many numbers modulo p, by the
Pigeonhole principle, there must be some numbers n < m such that an ≡ am (mod p). Since a has an inverse
modulo p, an has an inverse modulo p, so 1 ≡ am−n (mod p). Thus, m− n is the required number.

Let the smallest positive n such that an ≡ 1 (mod p) be called the order of a modulo p. Our goal is to
prove that the order of a divides p− 1.

Let Ha be the set of powers of a modulo p, so Ha = {a1, a2, a3, . . . }. We have just shown that |Ha| is the
order of a. For b 6≡ 0 (mod p), let bHa denote the set {bak : ak ∈ Ha}. Since b has an inverse, multiplying
by b is a bijection, so |bHa| = |Ha|.

Fact: a`Ha = Ha. This is because a`Ha ⊆ Ha, and equality follows because they have the same size.
Fact: for any b1, b2 6≡ 0 (mod p), then b1Ha and b2Ha are either disjoint sets or equal sets. Suppose

b1Ha and b2Ha are not disjoint sets, which means they have an element in common, so b1a
k1 = b2a

k2 for
some k1, k2. Then b1Ha = b2a

k2−k1Ha = b2Ha.
Fact: {bHa : b 6≡ 0 (mod p)} is a partition of 1, 2, . . . , p − 1. Every number 1 ≤ b < p − 1 is in at least

one of these sets, in particular bHa, and every number is in at most one since they are disjoint or equal.
Since every set bHa is the same size, then |Ha| divides p − 1. That is, |Ha|m = p − 1 for some m ∈ Z.

Thus, we have Fermat’s little theorem:

Theorem 3. If a 6≡ 0 (mod p) then ap−1 ≡ 1 (mod p).

Proof. ap−1 ≡ a|Ha|m ≡ (a|Ha|)m ≡ 1m ≡ 1 (mod p).

If you want some words to look up: 1, . . . , p− 1 are the elements of the multiplicative group of Z/pZ, Ha

is the cyclic subgroup generated by a, and bHa is a coset.
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