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Recall that the Fibonacci sequence is fn = fn−1 + fn−2 with f0 = 0 and f1 = 1. A midterm question
asked why it was that 3 | fn if 4 | n. In discussion, I asked whether this could be extended to primes other
than 3, since we noticed that the tables were periodic far sooner than the pigeonhole principle guarantees,
and for the primes we tried the period was 2(p+ 1). Jiahan Du figured it out and wrote up a solution. For
those who are interested in abstract algebra, I’ve rewritten it using some field theory.

Theorem 1. Let p be an odd prime not equal to 5. Then

1. if p ≡ ±1 (mod 5), fn ≡ fn+p−1 (mod p) for all n; and

2. if p ≡ ±2 (mod 5), fn ≡ −fn+p+1 (mod p) for all n.

Of course, by requiring odd primes the congruences are p ≡ ±1 (mod 10) and p ≡ ±3 (mod 10), respec-
tively.

For the midterm question, since 3 ≡ −2 (mod 5), the second case applies, and thus f4k ≡ −f4k+4 (mod 3)
for all n. Since f0 = 0, it follows that 3 | fn if 4 | n.

Definition 2. For p a prime, the set Fp = Z/pZ is the field of integers modulo p.

A field is a number system with addition, subtraction, multiplication, and division. Division can be done
in Fp due to the existence of multiplicative inverses through Bézout’s lemma.

Temporarily, we will speak about a general field k. The set of polynomials with coefficients in k and
indeterminate x is called k[x]. Here is a quick overview of some properties we might care about for a
polynomial f(x) ∈ k[x]:

• If f(x) = g(x)h(x) for some g(x), h(x) ∈ k[x], with neither g(x) nor h(x) a constant polynomial, then
f(x) is called reducible. Otherwise, f(x) is called irreducible.

• If for all g(x), h(x) ∈ k[x] such that f(x) | g(x)h(x) then f(x) | g(x) or f(x) | h(x), then f(x) is called
prime. Because of polynomial long division, prime is equivalent to irreducible.

• If f(x) has a root α ∈ k, then through polynomial long division f(x) = (x− α)q(x) for some quotient
q(x) ∈ k[x]. This means (1) if f(x) is irreducible then f(x) has no roots, and (2) f(x) has at most
deg f(x) roots.

If f(x) is irreducible, there is a standard construction to create a new field in which f(x) has a root. The
set k[x]/(f(x)) is the set of polynomials modulo f(x), and if [x] is the equivalence class of x in k[x]/(f(x)),
then f([x]) = [0]. Through polynomial long division, it’s not hard to show that [x] has a multiplicative
inverse.

Definition 3. Given a field k and a field K such that k ⊂ K, then K is called a field extension of k. If
α ∈ K, the smallest field extension of k containing α is called k[α], the adjunction of k by α.

Lemma 4. If f(x) ∈ k[x] is irreducible, then there is a field extension of k such that f(x) has a root. In
particular, k[x]/(f(x)) with α = [x].
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For example, C = R[i], and x2 + 1 is an irreducible polynomial over R, and C ∼= R[x]/(x2 + 1), with
i = [x]. In math, a thing is what it does: i is just a thing that when you square it you get −1, and we have
x2 ≡ −1 (mod x2 + 1).

It is OK to adjoin an element which already exists in k, you just won’t get something that is bigger.
For instance, R[

√
5] = R. The polynomial x2 − 5 is not irreducible, and factors as (x −

√
5)(x +

√
5), and

R[
√

5] ∼= R[x]/(x−
√

5).

Definition 5. If K is a field extension of k, then K can be thought of as a vector space over k. The degree
of the extension is dimkK.

The C = R[i] example gives that the degree of C over R is two. In general, the degree of the extension
is the degree of the corresponding irreducible polynomial, if the extension is finite, hence why it is called
“degree.”

Now let us go back to k = Fp.

Lemma 6. If K is a finite field extension of Fp, then the map F : K → K defined by F (x) = xp is an
automorphism. Furthermore, for a ∈ K, F (a) = a if and only if a ∈ Fp; which is to say Fp is the fixed field
of F . The map F is called the Frobenius automorphism.

Proof. A field automorphism is a map which is a field homomorphism (F (1) = 1, F (a+b) = F (a)+F (b) and
F (ab) = F (a)F (b)), which has the domain equaling the codomain, and which is a bijection. Multiplication
is clear:

F (ab) = (ab)p = apbp = F (a)F (b).

Addition is trickier:

F (a+ b) = (a+ b)p =

p∑
i=0

(
p

i

)
ap−ibi

Excercise for the reader: for prime p and 1 ≤ i ≤ n− 1, then p |
(
p
i

)
. Then we continue:

= ap + bp = F (a) + F (b)

The fact it is a bijection is because it is injective and |K| is finite. Injectivity is because if F (a) = 0 with
a 6= 0, then F (1) = F (aa−1) = F (a)F (a−1) = 0F (a−1) = 0, contradicting the fact that F (1) = 1.

If a ∈ Fp, then Fermat’s little theorem says ap ≡ a (mod p), so Fp is certainly fixed by F . For the
converse, an element a ∈ K is fixed by F if ap−a = 0, which is to say if it is a root of xp−x. Since we know
0, . . . , p− 1 ∈ Fp are roots of xp − x, there can be no other roots.

An interesting thing about a field automorphism is that, if the coefficients of a polynomial are fixed by
the automorphism, then roots get sent to roots. For, if f(x) = c0 + c1x+ · · ·+ cnx

n, c0, . . . , cn ∈ Fp, and α
a root of f ,

0 = F (0) = F (f(α)) = F (c0 + c1α+ · · ·+ cnα
n)

= F (c0) + F (c1)F (α) + · · ·+ F (cn)F (α)n

= c0 + c1F (α) + · · ·+ cnF (α)n = f(F (α)).

Now to our original problem. One way to study the Fibonacci sequence is as a linear system(
fn+1

fn+2

)
=

(
0 1
1 1

)(
fn
fn+1

)
,

which in closed form is (
fn
fn+1

)
=

(
0 1
1 1

)n(
0
1

)
.
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With ϕ the root of the characteristic polynomial x2 − x − 1 over Fp, the transition matrix A is readily
diagonalized over Fp[ϕ]:

A =

(
0 1
1 1

)
=

(
1 1
ϕ 1− ϕ

)(
ϕ 0
0 1− ϕ

)(
1 1
ϕ 1− ϕ

)−1

(Using the modulo idea, we can get many relations on ϕ. For instance, ϕ2 = ϕ + 1, ϕ(ϕ − 1) = 1 so
ϕ−1 = ϕ − 1, and (1 − ϕ)−1 = −ϕ.) The diagonalization yields a periodicity if ϕn = (1 − ϕ)n = 1, or an
“odd periodicity” if ϕn = (1− ϕ)n = −1.

If ϕ ∈ Fp, then by Fermat’s little theorem, ϕp−1 = 1 and (1 − ϕ)p−1 = 1, since ϕ, 1 − ϕ are not zero in
Fp. Then, the period must divide p − 1. There is a paper on “Fibonacci primitive roots”1 which says that
the period might not equal p− 1, for instance p = 29 has ϕ14 = 1.

If ϕ 6∈ Fp, then F (ϕ) 6= ϕ, yet F (ϕ) must still be a root of the characteristic polynomial, so F (ϕ) must
be the other root 1− ϕ. Since this means ϕp = 1− ϕ and (1− ϕ)p = ϕ, we have

ϕp+1 = ϕ(1− ϕ) = −1

(1− ϕ)p+1 = (1− ϕ)ϕ = −1.

Thus, the period must divide 2(p+ 1), with an “odd period” dividing p+ 1.
Now to characterize the condition ϕ ∈ Fp. The quadratic formula gives ϕ = 1

2 (1 +
√

5), so for an odd

prime p 6= 5, Fp[ϕ] = Fp[
√

5]. This is simply the question of whether x2 − 5 is an irreducible polynomial in
Fp, or rather whether 5 is not a quadratic residue. Using quadratic reciprocity of the Jacobi symbol,(

5

p

)
=
(p

5

)
(−1)

p−1
2 · 5−1

2 =
(p

5

)
which is 1 if p ≡ ±1 (mod 5) and which is −1 if p ≡ ±2 (mod 5). Hence:

1. If p ≡ ±1 (mod 5), then Fp contains a square root of 5, in which case Ap−1 = I2.

2. If p ≡ ±2 (mod 5), then Fp does not contain a square root of 5, in which case Ap+1 = −I2.

This completes the proof.
Question: Can the actual period be characterized further?

1http://www.fq.math.ca/Scanned/10-2/shanks-a.pdf
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