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The Chinese Remainder Theorem says that systems of congruences always have a solution (assuming
pairwise coprime moduli):

Theorem 1. Let n,m ∈ N with gcd(n,m) = 1. For any a, b ∈ Z, there is a solution x to the system

x ≡ a (mod n)

x ≡ b (mod m)

In fact, the solution is unique modulo nm.

The key fact which lets us solve such a congruence is the following. Suppose we manage to find two
numbers α, β ∈ Z with the following four properties:

α ≡ 1 (mod n) α ≡ 0 (mod m)

β ≡ 0 (mod n) β ≡ 1 (mod m)

Then, x = αa+ βb is a solution to the system of congruences. This is because

αa+ βb ≡n 1a+ 0b ≡n a

αa+ βb ≡m 0a+ 1b ≡m b

(where x ≡n y is shorthand for x ≡ n (mod n)).
But, how do we find such a pair α and β? It turns out that Bézout’s theorem gives us these. Since

gcd(n,m) = 1, there are two numbers ν, µ ∈ Z such that 1 = νn+ µm. This equation leads to the following
congruences:

1 = νn+ µm ≡n ν0 + µm ≡n µm

and

1 = νn+ µm ≡m νn+ µ0 ≡m νn

Thus,

µm ≡ 1 (mod n) µm ≡ 0 (mod m)

νn ≡ 0 (mod n) νn ≡ 1 (mod m)

so α = µm and β = νn are numbers which will do the job.
And, how do we calculate µ and ν? The extended Euclid’s algorithm is able to compute them.
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1 An extension

Suppose we have a system of three congruences:

x ≡ a (mod n)

x ≡ b (mod m)

x ≡ c (mod `)

such that gcd(n,m) = 1, gcd(n, `) = 1, and gcd(m, `) = 1. One way to proceed is to solve the system
consisting of only the first two congruences, which gives x ≡ d (mod nm), and then solving the resulting
system of two congruences.

Though, using similar logic to the two-congruence case, if we manage to find three numbers α, β, γ ∈ Z
with the following nine properties:

α ≡ 1 (mod n) α ≡ 0 (mod m) α ≡ 0 (mod `)

β ≡ 0 (mod n) β ≡ 1 (mod m) β ≡ 0 (mod `)

γ ≡ 0 (mod n) γ ≡ 0 (mod m) γ ≡ 1 (mod `)

then x = αa+ βb+ γc is a solution to the system of congruences.
One way to produce such a trio of numbers is to compute many modulo inverses. To give some idea for

how to come by this, for α, we want a number divisible by m` but which leaves remainder 1 when divided
by n. Since gcd(n,m`) = 1, then 1 = µn+ νm` for some µ, ν ∈ Z, and thus α = νm` is a number with the
correct property: νm` = (1− µn) ≡n 1− 0 = 1 and νm` ≡m` ν0 = 0.

In particular, if ν, µ, λ ∈ Z are numbers which are the following modulo inverses:

ν ≡ (m`)−1 (mod n)

µ ≡ (n`)−1 (mod m)

λ ≡ (mn)−1 (mod `)

(all of which exist because, for instance, gcd(m`, n) = 1), then

α = νm`

β = µn`

γ = λmn

are three numbers with the required nine properties for being able to solve the system of congruences.
Example. Let us find x ∈ Z such that x ≡2 1, x ≡3 2, x ≡5 4. The first step is to find α, β, γ for 2, 3, 5.

ν ≡ (3 · 5)−1 ≡ 1−1 ≡ 1 (mod 2)

µ ≡ (2 · 5)−1 ≡ 1−1 ≡ 1 (mod 3)

λ ≡ (2 · 3)−1 ≡ 1−1 ≡ 1 (mod 5)

(This was a total accident that ν, µ, λ were all 1.) Then,

α = 1 · 3 · 5 = 15

β = 1 · 2 · 5 = 10

γ = 1 · 2 · 3 = 6

Thus,

x ≡ 1 · 15 + 2 · 10 + 4 · 6 ≡ 29 (mod 30)

(In fact, the original system is x ≡2 −1, x ≡3 −1, and x ≡5 −1. Notice x ≡30 −1.)
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2 Polynomial interpolation

The problem of polynomial interpolation is suprisingly similar to the Chinese Remainder Theorem. Here is
the problem: Given x1, . . . , xn ∈ R, all distinct, and any values y1, . . . , yn ∈ R, can we compute a polynomial
p such that

p(x1) = y1

p(x2) = y2

...

p(xn) = yn

This is called interpolation because we can then use this polynomial p to compute intermediate values that
aren’t one of the x1, . . . , xn.

Suppose we found polynomials g1, . . . , gn with the properties that gi(xj) = δij , where δij is the Kronecker
delta (δij = 1 if i = j and δij = 0 if i 6= j; the i and j are not multiplied together, so try not to be confused
by this notation!) That is to say, suppose the polynomials had the following properties:

g1(x1) = 1 g1(x2) = 0 . . . g1(xn) = 0

g2(x1) = 0 g1(x2) = 1 . . . g2(xn) = 0

...
...

. . .
...

gn(x1) = 0 gn(x2) = 0 . . . gn(xn) = 1

Then, p(x) =
∑n

i=1 yigi(x) would be a polynomial which solves the system! That is because p(xj) =∑n
i=1 yigi(xj) =

∑n
i=1 yiδij = yj , to put it into symbols. Or,

p(xj) = y1g1(xj) + y2g2(xj) + · · ·+ yjgj(xj) + · · ·+ yngn(xj)

= y10 + y20 + · · ·+ yj1 + · · ·+ yn0

= yj

It turns out there is a rather easy way to come up with these polynomials. Let h(x) = (x − x1)(x −
x2) · · · (x − xn), which is a polynomial with x1, . . . , xn as roots. Let hi(x) = h(x)/(x − xi), which is the
polynomial obtained by omitting the (x− xi) term from h(x). This is to say,

hi(x) = (x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

One thing is for certain, hi(xi) 6= 0 and hi(xj) = 0 when j 6= i. This is almost right except that hi(xi) might
not be 1. To remedy this, we just divide through by hi(xi). Let

gi(x) =
hi(x)

hi(xi)

which is a degree n− 1 polynomial.
For n = 3, these are the corresponding polynomials:

g1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
g2(x) =

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
g3(x) =

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

The correspondence with the Chinese Remainder Theorem will take some time to develop, but here it is
quickly, for n = 3 for notational simplicity. As polynomials, x−x1, x−x2, and x−x3 are pairwise coprime,
and we can instead think about solving the system of congruences

p(x) ≡ y1 (mod x− x1)

p(x) ≡ y2 (mod x− x2)

p(x) ≡ y3 (mod x− x3)
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for a polynomial p(x). Modulo a polynomial is defined the same: two polynomials are congruent modulo
g(x) if their difference is a multiple of g(x). To understand modulo x − xi, since x ≡ xi (mod x − xi) we
may replace all instances of x with xi, so a fundamental fact is that p(x) ≡ p(xi) (mod x− xi), and thus is
in fact evaluation.

Equating terms with the Chinese Remainder Theorem, we see n = x− x1, m = x− x2, and ` = x− x3,
with α = g1, β = g2, and γ = g3. When we calculated ν, we calculated ν ≡ (m`)−1 (mod n), which is
ν ≡ ((x − x2)(x − x3))−1 ≡ ((x1 − x2)(x1 − x3))−1 (mod x − x1), and then α = νm` = ((x1 − x2)(x1 −
x3))−1(x− x2)(x− x3), which is g1(x)!

3 A deeper explanation

In this section, we will explore some of the algebra people came up with to explain the correspondence
hinted at above. This will only be a deeper but not an in-depth explanation. Feel free to just read an actual
textbook about abstract algebra instead (ring theory in particular).

Instead of congruence notation, a more modern (and in my opinion cleaner) way to go is to work with
equivalence classes. Let [a]n denote the set of everything congruent to a modulo n. For Z,

[a]n = {b ∈ Z : a ≡n b}

One may show that if b ∈ [a]n, then [a]n = [b]n. Sometimes we may drop the sub-n if the modulus is clear
from context.

We may define addition and multiplication by [a]n + [b]n = [a+ b]n and [a]n[b]n = [ab]n. For instance,

[2]5 + [4]5 = [2 + 4]5 = [6]5 = [1]5

It follows from theorems about modulo arithmetic that if [a]n = [a′]n and [b]n = [b′]n, then [a+b]n = [a′+b′]n.
A more general point of view is the following. A subset I ⊆ Z is called an ideal of Z if the following

properties hold:

1. 0 ∈ I.

2. If a, b ∈ I, then a+ b ∈ I.

3. If n ∈ Z and a ∈ I, then na ∈ I.

We may define an equivalence relation called modulo I. a, b ∈ Z are equivalent modulo I if b− a ∈ I. This
is an equivalence relation because

• It is reflexive: a ≡ a (mod I) since a− a = 0 ∈ I.

• It is symmetric: If a ≡ b (mod I), then b− a ∈ I, so a− b = −1(b− a) ∈ I, too. Thus b ≡ a (mod I).

• It is transitive: If a ≡ b (mod I) and b ≡ c (mod I), then b − a ∈ I and c − b ∈ I, so c − a =
(c− b) + (b− a) ∈ I. Thus a ≡ c (mod I).

Whenever we have an equivalence relation, we may split a set into disjoint equivalence classes. The equiva-
lence class containing a ∈ Z is [a]I = {b ∈ Z : b − a ∈ I}, and the set of equivalence classes is denoted Z/I
(pronounced “zee mod eye”), which is the collection {[a]I : a ∈ Z} of equivalence classes, and which is called
a quotient ring.

The condition b− a ∈ I is the same as saying b ∈ a+ I, if we agree that a+ I = {a+ x : x ∈ I}. Thus,
[a]I = a+ I, and in fact the latter notation is more common. With this notation, Z/I = {a+ I : a ∈ Z}.

Just like for modulo, one can also show that Z/I has addition and multiplication operations, with [0]I
the additive identity and [1]I the multiplicative identity.

(The even more general case is for a ring R, where an ideal of R is a subset with the same three properties,
with R replacing Z. Talking about rings in general will be taking us too far afield, though we will talk about
the ring of polynomials later. We could also say that Z/I is a ring.)

Example. When n ∈ Z, the set nZ = {na : a ∈ Z} is an ideal. It is the ideal of multiples of n. When
n = 0, 0Z = {0}, the zero ideal. When n = 1, 1Z = Z, the entire set of integers.
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Example. If I ⊆ Z is an ideal and 1 ∈ Z, then I = Z. This is because for every n ∈ Z, n1 ∈ I, too.
For Z, these are in fact the only ideals, as the following theorem proves. Thus the only quotient rings of

Z are Z/nZ for some n ∈ Z.

Theorem 2. If I ⊆ Z is an ideal, then I = nZ for some n ∈ Z.

Proof. If I = {0}, then I = 0Z. Otherwise, I contains a nonzero element n, which we may assume is positive
since −n = (−1)n ∈ I, too. Furthermore, we may assume n is the least positive element in I. Since na ∈ I
for all a ∈ Z, it is clear that nZ ⊆ I. We will prove that I ⊆ nZ.

Take an arbitrary element x ∈ I. By the division algorithm, there are integers q, r such that x = qn+ r
with 0 ≤ r < n. Since x ∈ I and qn ∈ I, x − qn ∈ I, so r ∈ I, too. Since n is the least positive element
in I, and r is nonnegative and less than n, it must be the case that r = 0. Thus, x = qn, so x ∈ nZ. This
establishes the equality.

Fact: if I ⊆ Z and J ⊆ Z are ideals, then

• I + J = {x + y : x ∈ I and y ∈ J} is an ideal. This is because of the following: 0 = 0 + 0 ∈ I + J ,
for x+ y ∈ I + J and x′ + y′ ∈ I + J , (x+ y) + (x′ + y′) = (x+ x′) + (y + y′) ∈ I + J , and if n ∈ Z,
n(x+ y) = nx+ ny ∈ I + J .

• I ∩ J is an ideal. This ideal is equal to IJ = {xy : x ∈ I and y ∈ J}. Exercise.

The greatest common divisor of n and m is the positive integer d ∈ Z such that nZ + mZ = dZ. Such
a number exists because nZ + mZ is an ideal, and the theorem says every ideal is of the form dZ for some
d ∈ Z. Since n = n + 0 ∈ nZ + mZ, n ∈ dZ, so there is an a ∈ Z such that n = da, hence d|n. Similarly
d|m, so d is certainly a common divisor. If d′ were also a common divisor, then n ∈ d′Z and m ∈ d′Z, so
nZ ⊆ d′Z and mZ ⊆ d′Z, hence nZ +mZ ⊆ d′Z, and so dZ ⊂ d′Z, which implies d ∈ d′Z, so d′|d. Thus d is
the greatest common divisor.

Notice that nZ+mZ = dZ implies Bézout’s theorem since d ∈ dZ, so d ∈ nZ+mZ, so there exist a, b ∈ Z
such that d = na+mb.

Two numbers n,m ∈ Z are coprime if nZ +mZ = Z. That is, if gcd(n,m) = 1.

Theorem 3 (Chinese Remainder Theorem). If I, J ⊆ Z are ideals such that I + J = Z, then the function

f : Z→ Z/I × Z/J

defined by f(n) = ([n]I , [n]J) is a surjection.

Proof. Since I + J = Z, there is an x ∈ I and y ∈ J such that x + y = 1. Given an arbitrary ([a]I , [b]J) ∈
Z/I × Z/J , let n = ay + bx. We can calculate [x]I = 0, [x]J = [1 − y]J = [1]J , [y]I = [1 − x]I = [1]I , and
[y]J = [0]J , so [ay+ bx]I = [a1 + b0] = [a]I and [ay+ bx]J = [a0 + b1]J = [b]J . Therefore, f(n) = ([a]I , [b]J),
and since a, b were arbitrary, f is surjective.

In fact, one may prove that the kernel of f is I ∩ J , so there is a bijection Z/(I ∩ J)→ Z/I × Z/J .

It should be said that f is what is called a ring homomorphism, which is a function with the extra
properties that f(x+y) = f(x) +f(y), f(xy) = f(x)f(y), and f(1) = 1 (where each 1 is some multiplicative
identity).

The theorem can be extended to any number of mutually coprime ideals. For instance, I, J,K ⊆ Z ideals
such that I + J = Z, I +K = Z, and J +K = Z gives a surjection f : Z→ Z/I × Z/J × Z/K (with kernel
I ∩ J ∩K).

3.1 To polynomials

A common notation for the set of polynomials with real coefficients with variable x is R[x]. This is called
the ring of polynomials with real coefficients. An ideal I of R[x] is defined similarly, except we replace Z
with R[x] in the definition.

Polynomials also have a division algorithm theorem:
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Theorem 4. For f, g ∈ R[x] with g 6= 0, there are two polynomials q, r ∈ R[x] such that f(x) = g(x)q(x) +
r(x) and such that deg r < deg q.

The only thing we needed in Theorem 2 was the division algorithm for Z. From the same proof, replacing
“least” with “least degree,” it follows that every ideal I ⊂ R[x] is of the form gR[x] for some polynomial
g ∈ R[x]. Elements of gR[x] are those polynomials whose roots include all of the roots of g. (If we were
talking about C[x] instead, ideals are in correspondence all possible finite sets of roots from C.)

Theorem 5. The function R[x]→ R[x]/(x− a) defined by p(x) 7→ [p(x)](x−a) corresponds to the evaluation
map p(x) 7→ p(a). In fact, R[x]/(x− a) is isomorphic to R.

Proof. Since x ≡ a (mod x− a), it follows that xn ≡ an (mod x− a), so
∑

n cnx
n ≡

∑
n cna

n (mod x− a).
Thus, p(x) ≡ p(a) (mod x− a) for every p ∈ R[x]. In other words, [p(x)](x−a) = [p(a)](x−a).

Since p(a) ∈ R, R[x]/(x− a) is actually just R. In particular, the isomorphism is defined by [1](x−a) 7→ 1
and [x](x−a) 7→ a. (I am being sketchy here.)

The Chinese Remainder Theorem carries over to polynomials, too, since it was only a statement of
abstract ideals. A specialization of the theorem to ideals of the form (x− a)R[x] is the following:

Theorem 6. If a1, . . . , an ∈ R are distinct, then the map f : R[x]→ Rn defined by f(p) = (p(a1), . . . , p(an))
is a surjection.

Proof. Fact: if ai 6= aj , then (x − ai)R[x] + (x − aj)R[x] = R[x]. This is because x−ai

aj−ai
+

x−aj

ai−aj
is a linear

polynomial which is 1 at ai and at aj , so it is equal to 1. Since (x− ai)R[x] + (x− aj)R[x] is an ideal which
contains 1, it is equal to R[x].

Thus, (x − a1)R[x], (x − a2)R[x], through (x − an)R[x] are ideals whose pairwise sums are R[x]. This
means the Chinese remainder theorem applies, saying R[x]→ (R[x]/(x− a1)R[x])× · · · × (R[x]/(x− an)) is
a surjection. Since R[x]/(x − ai) is isomorphic to R and the corresponding map in the Chinese Remainder
Theorem is evaluation of a polynomial at ai, we have our result.

3.2 Back to integers

A more advanced point of view is somewhat bizarre. Consider: the function R[x]→ R[x]/(x− a) represents
evaluation of a polynomial at a; and x− a the polynomial is sort of like the point a ∈ R in that it has a root
there. So: what if Z→ Z/nZ represents “evaluating an integer” at the “point” n?

For sake of notation, for a ∈ Z let a(n) = [a]n, representing this new concept of evaluating an integer a
at n. Then, a system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ an (mod mn)

can be written instead as

x(m1) = [a1]m1

x(m2) = [a2]m2

...

x(mn) = [an]mn

While it is somewhat weird that each evaluation occurs in a different quotient ring (where in contrast for
polynomial evaluation all the values ultimately were in R, at least isomorphically), at least it looks somewhat
like the polynomial interpolation problem.

I have ignored a particular issue: why for polynomials do we only evaluate a linear polynomial like x−a?
The reason is that these are primes (and in C[x] these are the primes). One could evaluate at something
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like x2− 2x+ 3 as well, but the value ends up being in R[x]/(x2− 2x+ 3), which is a two-dimensional space
of values! This is fine, but just something to be aware of. In algebraic geometry, there is a correspondence
between primes (algebra) and points (geometry). The points for Z correspond to 2, 3, 5, 7, 11, . . . . Computing
[a]n then gives the evaluation of a at the points which make up n, namely the prime factors of n.

The Chinese Remainder Theorem requires that each of the ideals be pairwise coprime. This is essentially
saying that the sets of points each ideal corresponds to are pairwise disjoint. That is, the Chinese Remainder
Theorem says, geometrically speaking, given values at a bunch of points in such a way that you are not giving
different values to the same point, there exists some element which evaluates to those values at those points.

3.3 Books

If you got this far and want to know more, some books you might consider taking a look at:

1. Michael Artin’s Algebra is the textbook from which I learned abstract algebra.

2. I’ve heard good things about Dummit and Foote’s Abstract Algebra, though I’ve never opened it.

3. Once your mathematical maturity reaches a certain level you could attempt Serge Lang’s Algebra. It’s
only clear, though, once the subject already makes sense.

4. Some number theory books include Rosen’s Elementary Number Theory and Ireland and Rosen’s A
Classical Introduction to Modern Number Theory.

5. Bach and Shallit have Algorithmic Number Theory if you want to compute things, though they also
have a good amount of underlying theory. (For instance, the convolution operator I mentioned and
how it relates the totient to the “Möbius function” is in here.)

6. Shaferevich has an interesting book called Algebra I, if you want to learn more about algebraic geometry.
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