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Quiz 3

1. (5 points) A subspace W of R3 is spanned by
(

2
−1
−1

)
,
( −1

2
−1

)
, and

( −1
−1
2

)
. What is dimW?

Let A be the 3× 3 matrix with the given three vectors as columns. A
(

1
1
1

)
= ~0, so they

are linearly dependent. Since this means the third vector is dependent on the first two,
we may remove it and still have a spanning set of W . A test for dependence of two
vectors is that neither is a scalar multiple of the other, which is indeed the case for the
first two vectors. Thus, the first two vectors are a basis of W , and so dimW = 2.

2. (5 points) A basis for P2 is B =
(
1 1 + x x2

)
. (a) Find coordinates for p1(x) = 2+x+x2,

p2(x) = −x + x2, and p3(x) = −1 + x + x2 with respect to B. (b) Use the coordinates to
determine whether these polynomials are linearly independent.

(a) Given a coordinate (c1, c2, c3) ∈ R3, the corresponding vector in P2 is c1(1) + c2(1 +
x) + c3(x

2) = (c1 + c2) + c2x + c3x
2.

The polynomial p1(x) needs c1 + c2 = 2, c2 = 1, and c3 = 1, so its coordinate is (1, 1, 1).
The polynomial p2(x) needs c1 + c2 = 0, c2 = −1, and c3 = 1, so its coordinate is
(1,−1, 1).
The polynomial p3(x) needs c1 + c2 = −1, c2 = 1, and c3 = 1, so its coordinate is
(−2, 1, 1).
(b) Whether vectors are linearly independent is whether c1p1(x) + c2p2(x) + c3p3(x) = 0
has only the trivial solution for (c1, c2, c3). Because B is an isomorphism, we can instead

check whether c1

(
1
1
1

)
+ c2

(
1
−1
1

)
+ c3

(
−2
1
1

)
= ~0 has only the trivial solution.

This is a vector equation, which has a corresponding matrix equation which we may
row reduce. After row reduction (omitted from this solution), one obtains three pivots,
so there is a unique solution: the trivial solution. Thus, the coordinate vectors are
independent, and so the three polynomials are independent.

3. (1 point) A 3× 3 matrix A satisfies A2 = 0. What are the possible dimensions for ColA
and NulA? Give them as pairs (dim ColA, dim NulA).

Since A2 = 0, for any vector ~v ∈ R3, A(A~v) = ~0. Thus, either A~e1 = ~0, or A~e1 is
nonzero. This means that NulA is not the zero subspace, since at least one of ~e1 and
A~e1 are in the nullspace. That is, dim NulA 6= 0.
By rank-nullity, the possible dimensions are (2, 1), (1, 2), and (0, 3), since the pairs of
dimensions sum to 3, and we exclude (3, 0).
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In fact, each are actually possible: 0 1 0
0 0 1
0 0 0


0 0 1

0 0 0
0 0 0


0 0 0

0 0 0
0 0 0




