Quiz 3

1. (5 points) A subspace W of \mathbb{R}^3 is spanned by $\begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$, $\begin{pmatrix} -1\\2\\-1 \end{pmatrix}$, and $\begin{pmatrix} -1\\-1\\2 \end{pmatrix}$. What is dim W?

Let A be the 3×3 matrix with the given three vectors as columns. $A\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \vec{0}$, so they are linearly dependent. Since this means the third vector is dependent on the first two, we may remove it and still have a spanning set of W. A test for dependence of two vectors is that neither is a scalar multiple of the other, which is indeed the case for the first two vectors. Thus, the first two vectors are a basis of W, and so dim W = 2.

2. (5 points) A basis for \mathbb{P}_2 is $\mathcal{B} = \begin{pmatrix} 1 & 1+x & x^2 \end{pmatrix}$. (a) Find coordinates for $p_1(x) = 2+x+x^2$, $p_2(x) = -x + x^2$, and $p_3(x) = -1 + x + x^2$ with respect to \mathcal{B} . (b) Use the coordinates to determine whether these polynomials are linearly independent.

(a) Given a coordinate $(c_1, c_2, c_3) \in \mathbb{R}^3$, the corresponding vector in \mathbb{P}_2 is $c_1(1) + c_2(1 + x) + c_3(x^2) = (c_1 + c_2) + c_2x + c_3x^2$.

The polynomial $p_1(x)$ needs $c_1 + c_2 = 2$, $c_2 = 1$, and $c_3 = 1$, so its coordinate is (1, 1, 1). The polynomial $p_2(x)$ needs $c_1 + c_2 = 0$, $c_2 = -1$, and $c_3 = 1$, so its coordinate is (1, -1, 1).

The polynomial $p_3(x)$ needs $c_1 + c_2 = -1$, $c_2 = 1$, and $c_3 = 1$, so its coordinate is (-2, 1, 1).

(b) Whether vectors are linearly independent is whether $c_1p_1(x) + c_2p_2(x) + c_3p_3(x) = 0$ has only the trivial solution for (c_1, c_2, c_3) . Because \mathcal{B} is an isomorphism, we can instead check whether $c_1\begin{pmatrix}1\\1\\1\end{pmatrix} + c_2\begin{pmatrix}1\\-1\\1\end{pmatrix} + c_3\begin{pmatrix}-2\\1\\1\end{pmatrix} = \vec{0}$ has only the trivial solution.

This is a vector equation, which has a corresponding matrix equation which we may row reduce. After row reduction (omitted from this solution), one obtains three pivots, so there is a unique solution: the trivial solution. Thus, the coordinate vectors are independent, and so the three polynomials are independent.

3. (1 point) A 3×3 matrix A satisfies $A^2 = 0$. What are the possible dimensions for Col A and Nul A? Give them as pairs (dim Col A, dim Nul A).

Since $A^2 = 0$, for any vector $\vec{v} \in \mathbb{R}^3$, $A(A\vec{v}) = \vec{0}$. Thus, either $A\vec{e_1} = \vec{0}$, or $A\vec{e_1}$ is nonzero. This means that Nul A is not the zero subspace, since at least one of $\vec{e_1}$ and $A\vec{e_1}$ are in the nullspace. That is, dim Nul $A \neq 0$. By rank-nullity, the possible dimensions are (2, 1), (1, 2), and (0, 3), since the pairs of

By rank-nullity, the possible dimensions are (2, 1), (1, 2), and (0, 3), since the pairs of dimensions sum to 3, and we exclude (3, 0).

In fact, each are actually possible:

(0	1	0
0	0	1
$\setminus 0$	0	0/
(0	0	1
0	0	0
$\setminus 0$	0	0/
$\int 0$	0	0
0	0	0
$\sqrt{0}$	0	0/