Quiz 1

1. (5 points) Solve $\begin{pmatrix} 1 & 2 & -1 & -1 & -5 \\ 2 & 4 & -1 & 2 & -5 \\ -1 & -2 & 0 & -3 & 0 \end{pmatrix} \vec{x} = \vec{0}$ either in parametric vector form or as a span.

This system has the augmented matrix

$$\begin{pmatrix} 1 & 2 & -1 & -1 & -5 & 0 \\ 2 & 4 & -1 & 2 & -5 & 0 \\ -1 & -2 & 0 & -3 & 0 & 0 \end{pmatrix}$$

which we will put into reduced row echelon form.^{*a*} As always, the order of row operations doesn't matter, though the following is according to the algorithm described by the textbook. First $R_2 - 2R_1 \rightarrow R_2$:

$$\begin{pmatrix} 1 & 2 & -1 & -1 & -5 & | & 0 \\ 0 & 0 & 1 & 4 & 5 & | & 0 \\ -1 & -2 & 0 & -3 & 0 & | & 0 \end{pmatrix}$$

Then $R_3 + R_1 \rightarrow R_3$:

Then
$$R_3 + R_2 \to R_3$$
:

$$\begin{pmatrix} 1 & 2 & -1 & -1 & -5 & | & 0 \\ 0 & 0 & 1 & 4 & 5 & | & 0 \\ 0 & 0 & -1 & -4 & -5 & | & 0 \\ 0 & 0 & 1 & 4 & 5 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

This is now in row echelon form, and is solvable by back-substitution, but I tend to like putting it into reduced row echelon form. Then $R_1 + R_2 \rightarrow R_1$:

$$\begin{pmatrix} 1 & 2 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 4 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Variables x_2, x_4, x_5 are free. We solve $x_1 = -2x_2 - 3x_4$ and $x_3 = -4x_4 - 5x_5$, hence

$$\vec{x} = x_2 \begin{pmatrix} -2\\1\\0\\0\\0 \end{pmatrix} + x_4 \begin{pmatrix} -3\\0\\-4\\1\\0 \end{pmatrix} + x_5 \begin{pmatrix} 0\\0\\-5\\0\\1 \end{pmatrix}.$$

The solution set is the span of these three vectors.

^{*a*}In practice, I would just do the reduced row echelon form of the coefficient matrix A, knowing that the row operations will leave the $\vec{0}$ column as $\vec{0}$. This saves some unnecessary writing.

2. (5 points) Are the columns of $\begin{pmatrix} 1 & -2 & -1 \\ 1 & 0 & 3 \\ 2 & -1 & 4 \end{pmatrix}$ independent? Give a dependence if not.

To determine independence, we see if $A\vec{x} = \vec{0}$ has a non-trivial solution. The non-trivial solution would give us a dependence.

We start with the augmented matrix again and compute reduced row echelon form.

(1)	-2	-1	0
1	0	3	0
$\backslash 2$	-1	$-1 \\ 3 \\ 4$	0/

First $R_2 - R_1 \rightarrow R_2$ then $R_3 - 2R_1 \rightarrow R_3$:

(1)	-2	-1	0
0	2	4	0
$\int 0$	3	$-1 \\ 4 \\ 6$	0/

Then $\frac{1}{2}R_2 \rightarrow R_2$:

	$\begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 3 & 6 & 0 \end{pmatrix}$
Then $R_3 - 3R_2 \rightarrow R_3$:	$\begin{pmatrix} 1 & -2 & -1 & & 0 \\ 0 & 1 & 2 & & 0 \\ 0 & 0 & 0 & & 0 \end{pmatrix}$

At this point, we are sure that the columns of the matrix are dependent: fewer pivots than columns implies that there is a non-trivial solution to this homogeneous system. Finally $R_1 + 2R_2 \rightarrow R_1$:

$$\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

We just need *some* non-trivial solution to give a dependence. The free variable is x_3 , so we may as well let it equal something simple, like 1 (though you are free to choose your favorite non-zero number). This gives $x_1 = -3$ and $x_2 = -2$. Together, we then have a dependence:

 $\vec{0} = -3 \begin{pmatrix} 1\\1\\2 \end{pmatrix} - 2 \begin{pmatrix} -2\\0\\-1 \end{pmatrix} + 1 \begin{pmatrix} -1\\3\\4 \end{pmatrix}$

3. (1 point) For some 3×5 matrix A, the solution set to $A\vec{x} = \vec{0}$ is $\text{Span}\{\vec{u}, \vec{v}\}$, with $\vec{u}, \vec{v} \in \mathbb{R}^5$. Do the columns of A span \mathbb{R}^3 ? Give a one-sentence explanation. The columns of A span \mathbb{R}^3 because there is a pivot in each row, which is because A has three pivot columns which is because A has at most two free columns, which is because the homogenous equation's solution set is the span of only two vectors.

In multiple sentences: The solution set is the span of two vectors. This means that A has at most two free columns. Since it has five columns total, this means it has at least three pivot columns. Since A has only three rows, we can see A has exactly one pivot in each row. This is logically equivalent to the columns of A spanning \mathbb{R}^3 .