
1. (15 points) For each of the following matrices A, compute bases for ColA, NulA, and RowA.

(a) A =

1 0 0 1
0 1 0 2
0 0 1 3

 (b) A =

4 0 1
0 1 2
0 2 4

 (c) A =


1 1 2
1 1 3
1 1 4
1 2 5


(a) The matrix is already in reduced row echelon form. The basis for the column space is the three
pivot columns: 

1
0
0

 ,

0
1
0

 ,

0
0
1


The null space is given by the standard algorithm (the fourth column is the only free column):


−1
−2
−3
1




The row space is given by the there non-zero rows:


1
0
0
1

 ,


0
1
0
2

 ,


0
0
1
3




(b) We first row reduce to get

A ∼

1 0 1
4

0 1 2
0 0 0


Then the column space’s basis is the first two columns of the original matrix, the null space’s basis has
one vector, and the row space’s basis is the first two rows of the row-reduced matrix:

basis of ColA =


4

0
0

 ,

0
1
2


basis of NulA =


− 1

4
−2
1


basis of RowA =


1

0
1
4

 ,

0
1
2


(c) Row reduction:

A ∼


1 1 2
0 0 1
0 0 2
0 1 3

 ∼


1 0 0
0 1 0
0 0 1
0 0 0


So, a basis for ColA is the three columns of A, the basis for NulA is the empty set {} (also written
∅), and a basis for RowA is {~e1, ~e2, ~e3}. Make sure to use the nonzero rows of the row echelon form!

Otherwise you would mistakenly write
{(

1
1
2

)
,
(

1
1
3

)
,
(

1
1
4

)}
as a basis, which is a dependent set.

To compute a basis for RowA, it is also OK to compute a basis for ColAT , since RowA = ColAT .
This method will give different bases from those given above.
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2. (15 points) Rm×n is the vector space of m×n matrices with the usual addition and scalar multiplication.

(a) Let W be the set of all 2×2 matrices A where A~x = ( 1
2 ) has at least one solution. Determine whether

or not W is a subspace of R2×2, and if it is, give its dimension.

The 2 × 2 zero matrix A =

(
0 0
0 0

)
is a matrix where A~x = ( 1

2 ) has no solutions. This means W is

missing the zero vector, so it is not a subspace of R2×2.

Note: having at least one solution to A~x = ~b doesn’t imply the columns of A span R2! This was a

common invalid deduction. All having a solution means is that ~b in ColA (and since ColA is a subspace,

that Span{~b} ⊂ ColA). The zero matrix definitely doesn’t have any nonzero ~b in its column space.

(b) Let U be the set of all 3×3 matrices A satisfying AT = −A. Determine whether or not U is a subspace
of R3×3, and if it is, give its dimension.

The first way we could show it is a subspace:

(1) Let A,B be two matrices in U . We can see A+B is in U as well since (A+B)T = AT +BT =
(−A) + (−B) = −(A+B), so A+B also has the required property.

(2) Let A be a matrix in U and c ∈ R. We can see cA is in U as well since (cA)T = cAT = c(−A) =
−(cA), so cA also has the required property.

Since both properties are proved, U is a subspace of R3×3. (No need to check 0 ∈ U unless disproving.)
The second way is to notice that T (A) = AT + A is a linear transformation. This is because

T (A+B) = (A+B)T + (A+B) = (AT +A) + (BT +B) = T (A) + T (B) and T (cA) = (cA)T + cA =
c(AT +A) = cT (A). Then, U = kerT , and kernels are subspaces.

For dimension, a general matrix A can be written as

A =

a b c
d e f
g h i


so AT = −A implies nine equations (many superfluous). The essential ones:

a = −a
e = −e
i = −i
b = −d
g = −c
h = −f

and this system has three free variables, b, c, and f , with a = e = i = 0. So, U is three-dimensional.

3. (15 points) Let A =
(

5 −6 0
3 −4 0
0 0 1

)
. Its characteristic polynomial is pA(λ) = (1 + λ)(1− λ)(2− λ), which you

may use if you demonstrate how to compute it.
(a) Find all c ∈ R so that the matrix A− c2I3 is not invertible.

First, let’s calculate the characteristic polynomial:

det(A− λI3) = det

5− λ −6 0
3 −4− λ 0
0 0 1− λ


= (1− λ) det

(
5− λ −6

3 −4− λ

)
= (1− λ)((5− λ)(−4− λ) + 18)

= (1− λ)(λ2 − λ− 2) = (1− λ)(1 + λ)(2− λ)
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The matrix A−c2I3 is not invertible when det(A−c2I3) = 0. This is exactly when c2 is an eigenvalue,

since det(A−λI3) = 0 if and only if λ is an eigenvalue. Thus, c2 = 1,−1, 2, which implies c = ±1,±
√

2
(we’ve discarded the roots of −1 since c is presumed to be real, since the problem asks for c ∈ R).

(b) Compute A22
(

1
1
1

)
by first diagonalizing A.

The eigenvalues of A are 1,−1, 2, from the roots of the characteristic polynomial. Let us determine
bases for the eigenspaces.

For λ = 1,

Nul(A− I3) = Nul

4 −7 0
3 −5 0
0 0 0


We could go on and row reduce to show that the nullspace is only one-dimensional, or use the fact that

there are two other eigenspaces, so it must be one-dimensional. We can see that

0
0
1

 is an eigenvector

since it is in this nullspace.
For λ = −1,

Nul(A+ I3) = Nul

6 −6 0
3 −3 0
0 0 2

 = Nul

1 −1 0
0 0 1
0 0 0


so

1
1
0

 is an eigenvector.

For λ = 2,

Nul(A− 2I3) = Nul

3 −6 0
3 −6 0
0 0 −1

 = Nul

1 −2 0
0 0 1
0 0 0


so

2
1
0

 is an eigenvector.

Hence, we obtain the following diagonalization A = PDP−1:

D =

1 0 0
0 −1 0
0 0 2

 P =

0 1 2
0 1 1
1 0 0


Since A22 = PD22P−1, then to calculate A22

1
1
1

 we may calculate PD22P−1

1
1
1

. The vector

P−1

1
1
1

 is the coordinate vector of

1
1
1

 relative to basis P (that is, the solution to P~x =

1
1
1

), and

this is obviouslya

1
1
0

. Then, D22

1
1
0

 =

 122

(−1)22

0

, so then we calculate P

1
1
0

, which is

1
1
1

,

which is the answer.
aI mean this strictly in the sense that you can see it’s true by looking at it.
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4. (15 points) Let W be the subspace of R3 spanned by
(

1
−1
1

)
and

(
2
−3
4

)
.

(a) Compute projW

(
1
1
3

)
.

We first construct an orthogonal basis. The first vector ~u1 is the first vector, but the second vector ~u2
is (by the Gram-Schmidt process)

~u2 =
(

2
−3
4

)
−

(
1
−1
1

)
·
(

2
−3
4

)
(

1
−1
1

)
·
(

1
−1
1

) ( 1
−1
1

)
=
(

2
−3
4

)
− 3

(
1
−1
1

)
=
(−1

0
1

)
Then, we compute

projW

(
1
1
3

)
=

(
1
−1
1

)
·
(

1
1
3

)
(

1
−1
1

)
·
(

1
−1
1

) ( 1
−1
1

)
+

(−1
0
1

)
·
(

1
1
3

)
(−1

0
1

)
·
(−1

0
1

) (−10
1

)
= 1

(
1
−1
1

)
+ 1

(−1
0
1

)
=
(

0
−1
2

)
.

Alternatively, we compute ~x− projW⊥ ~x. To find a basis for W⊥, we find a basis for Nul
(
1 −1 1
2 −3 4

)
=

Nul
(
1 −1 1
0 1 −2

)
= Nul

(
1 0 −1
0 1 −2

)
= Span

{(
1
2
1

)}
. Then,

projW⊥

(
1
1
3

)
=

(
1
2
1

)
·
(

1
1
3

)
(

1
2
1

)
·
(

1
2
1

) ( 1
2
1

)
= 1

(
1
2
1

)
.

So, projW

(
1
1
3

)
=
(

1
1
3

)
−
(

1
2
1

)
=
(

0
−1
2

)
.

Even another way is to take the matrix A =
(

1 2
−1 −3
1 4

)
, find the least squares solution Ax̂ =

(
1
1
3

)
by solving ATAx̂ = AT

(
1
1
3

)
, and then computing Ax̂, which is the projection. ATA = ( 3 9

9 29 ) and

AT
(

1
1
3

)
= ( 3

11 ). Then, solving this system, x̂ =
(−2

1

)
, so projW

(
1
1
3

)
= Ax̂ =

(
0
−1
2

)
.

(b) Compute the matrix of the linear transformation T : R3 → R3 defined by T (~x) = projW ~x.

Two ways to do this. The first is to compute
(
T (~e1) T (~e2) T (~e3)

)
using the orthogonal basis {~u1, ~u2}

from (a).

T (~e1) =
~u1 · ~e1
~u1 · ~u1

~u1 +
~u2 · ~e1
~u2 · ~u2

=
1

3
~u1 −

1

2
~u2 =

(
5/6
−1/3
−1/6

)
T (~e2) =

~u1 · ~e2
~u1 · ~u1

~u1 +
~u2 · ~e2
~u2 · ~u2

= −1

3
~u1 + 0~u2 =

(
−1/3
1/3
−1/3

)
T (~e3) =

~u1 · ~e3
~u1 · ~u1

~u1 +
~u2 · ~e3
~u2 · ~u2

=
1

3
~u1 +

1

2
~u2 =

(
−1/6
−1/3
5/6

)

Thus, the matrix of T is [T ] =

 5/6 −1/3 −1/6
−1/3 1/3 −1/3
−1/6 −1/3 5/6


The second is to make an orthonormal basis and compute UUT . We have U =

 1/
√

3 −1/
√

2

−1/
√

3 0

1/
√

3 1/
√

2

,

and then UUT is the same matrix as the one above.

(c) Compute the dimension of W⊥.

Dimensions of a subspace and its orthogononal complement satisfy dimW + dimW⊥ = dimR3, so
dimW⊥ = 3 − 2 = 1. The nullspace calculation for one of the answers to (a) also gives 1 as the
dimension.
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5. (15 points) P2 is the vector space of polynomials whose degree is at most 2. Let T : P2 → P2 be defined
by T (p(x)) = p(x)− p(−x) for p(x) ∈ P2. For instance, T (x+ 1) = (x+ 1)− (−x+ 1) = 2x.

(a) Show that T is a linear transformation.

The way we show something is a linear transformation is to check the two properties from the definition:

(1) For p(t), q(t) polynomials in P2, we have T (p(t) + q(t)) = (p(x) + q(x)) − (p(−x) + q(−x)) =
(p(x)− p(−x)) + (q(x)− q(−x)) = T (p(x)) + T (q(x)).

(2) For p(t) a polynomial in P2 and c ∈ R, we have T (cp(x)) = (cp(x)) − (cp(−x)) = c(p(x) −
p(−x)) = cT (p(x)).

Therefore, T is a linear transformation.
(No need for T (0) = 0. This is implied by (2).)

(b) Compute bases for the kernel of T and for the image of T . (Range is a synonym for image.)

We have to go to coordinates, essentially, to answer this. We calculate T (p(x)) where p(x) = ax2+bx+c.
Then, T (ax2 + bx+ c) = (ax2 + bx+ c)− (a(−x)2 + b(−x) + c) = 2bx.

The kernel is kerT = {p(x) ∈ P2 : T (p(x)) = 0} = {ax2 + bx+ c : a, b, c ∈ R and T (ax2 + bx+ c) =
0} = {ax2 + bx + c : a, b, c ∈ R and 2bx = 0}. Since 2bx is the zero polynomial if and only if b = 0,
then kerT = {ax2 + c : a, c ∈ R} = Span{x2, 1}. Since x2 and 1 are linearly independent polynomials,
{x2, 1} is a basis for kerT .

The image is the set of all images, which we calculated to be {2bx : b ∈ R}. This is Span{x}, so {x}
is a basis for imT .

(c) Show that T is neither one-to-one nor onto.

Not one-to-one: (any of these will do)

• dim kerT > 0.
• T (x) = T (x+ 1) (example of two things mapping to the same thing)
• T (1) = 0 (example of a nonzero thing in the kernel)

Not onto: (any of these will do)

• dim imT < dimP2 (that is, 1 < 3)
• T (p(x)) = 1 has no solutions since T (p(x)) is always of the form 2bx for some b.


