MATH 54 LECTURE 3. MIDTERM EXAM JULY 22, 2016, 50 MINUTES (6 PAGES)

Problem Number	1	2	3	4	5	Total
Score						

YOUR NAME: _____

No calculators, no references except for one 8.5×11 sheet of notes. Answers without justification will receive no credit. 1. (15 points) For each of the following matrices A, compute bases for Col A, Nul A, and Row A. $\begin{pmatrix} 1 & 1 & 2 \end{pmatrix}$

(a)
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix}$ (c) $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 1 & 1 & 4 \\ 1 & 2 & 5 \end{pmatrix}$

3

(a) Let W be the set of all 2×2 matrices A where $A\vec{x} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$ has at least one solution. Determine whether or not W is a subspace of $\mathbb{R}^{2\times 2}$, and if it is, give its dimension.

(b) Let U be the set of all 3×3 matrices A satisfying $A^T = -A$. Determine whether or not U is a subspace of $\mathbb{R}^{3\times 3}$, and if it is, give its dimension.

3. (15 points) Let $A = \begin{pmatrix} 5 & -6 & 0 \\ 3 & -4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Its characteristic polynomial is $p_A(\lambda) = (1 + \lambda)(1 - \lambda)(2 - \lambda)$, which you may use if you demonstrate how to compute it. (a) Find all $c \in \mathbb{R}$ so that the matrix $A - c^2 I_3$ is **not** invertible.

(b) Compute $A^{22}\begin{pmatrix}1\\1\\1\end{pmatrix}$ by first diagonalizing A.

 $\mathbf{5}$

- 4. (15 points) Let W be the subspace of \mathbb{R}^3 spanned by $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ and $\begin{pmatrix} 2\\-3\\4 \end{pmatrix}$.
 - (a) Compute $\operatorname{proj}_W \begin{pmatrix} 1\\ 1\\ 3 \end{pmatrix}$.
 - (b) Compute the matrix of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(\vec{x}) = \operatorname{proj}_W \vec{x}$. (c) Compute the dimension of W^{\perp} .

- 5. (15 points) \mathbb{P}_2 is the vector space of polynomials whose degree is at most 2. Let $T : \mathbb{P}_2 \to \mathbb{P}_2$ be defined by T(p(x)) = p(x) p(-x) for $p(x) \in \mathbb{P}_2$. For instance, T(x+1) = (x+1) (-x+1) = 2x.
 - (a) Show that T is a linear transformation.
 - (b) Compute bases for the kernel of T and for the image of T. (Range is a synonym for image.)
 - (c) Show that T is neither one-to-one nor onto.