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1. (15 points) For each of the following matrices A, compute bases for ColA, NulA, and RowA.

(a) A =

1 0 0 1
0 1 0 2
0 0 1 3

 (b) A =

4 0 1
0 1 2
0 2 4

 (c) A =


1 1 2
1 1 3
1 1 4
1 2 5


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2. (15 points) Rm×n is the vector space of m×n matrices with the usual addition and scalar multiplication.

(a) Let W be the set of all 2×2 matrices A where A~x = ( 1
2 ) has at least one solution. Determine whether

or not W is a subspace of R2×2, and if it is, give its dimension.

(b) Let U be the set of all 3×3 matrices A satisfying AT = −A. Determine whether or not U is a subspace
of R3×3, and if it is, give its dimension.
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3. (15 points) Let A =
(

5 −6 0
3 −4 0
0 0 1

)
. Its characteristic polynomial is pA(λ) = (1 + λ)(1− λ)(2− λ), which you

may use if you demonstrate how to compute it.
(a) Find all c ∈ R so that the matrix A− c2I3 is not invertible.

(b) Compute A22
(

1
1
1

)
by first diagonalizing A.
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4. (15 points) Let W be the subspace of R3 spanned by
(

1
−1
1

)
and

(
2
−3
4

)
.

(a) Compute projW

(
1
1
3

)
.

(b) Compute the matrix of the linear transformation T : R3 → R3 defined by T (~x) = projW ~x.
(c) Compute the dimension of W⊥.
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5. (15 points) P2 is the vector space of polynomials whose degree is at most 2. Let T : P2 → P2 be defined
by T (p(x)) = p(x)− p(−x) for p(x) ∈ P2. For instance, T (x+ 1) = (x+ 1)− (−x+ 1) = 2x.

(a) Show that T is a linear transformation.
(b) Compute bases for the kernel of T and for the image of T . (Range is a synonym for image.)
(c) Show that T is neither one-to-one nor onto.


