
MATH 54 LECTURE 3. FINAL EXAM

AUGUST 12, 2016, 110 MINUTES

(10 PAGES)

Problem Number 1 2 3 4 5 6 7 Total

Score

YOUR NAME:

No calculators, no cell phones, no references except for one 8.5× 11 sheet of notes.
Answers without justification will be regarded skeptically.
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1. (25 points) The following statements (a)-(e) are false. For each statement, give a concrete counterexample
to demonstrate its falsehood.

(a) If A is a 2× 2 matrix where A2 is the zero matrix, then A is the zero matrix.

(b) If A is not invertible, then A is not diagonalizable.

(c) If a linear transformation T : V →W maps V onto W , then T is one-to-one.
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(d) If A is a matrix with dim NulA = 0, then dim (ColA)⊥ = 0 as well.

(e) If ~f1(t), ~f2(t) are continuous vector-valued functions, and if t0 is a real number where ~f1(t0), ~f2(t0) are
linearly dependent, then the two functions themselves are linearly dependent.
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2. (20 points)

(a) Compute the first column of the inverse of

1 2 3
1 3 6
1 4 8

.

(b) Compute the determinant of

 2 0 4
−2 2 3
4 0 1

.
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(c) Compute the rank of

1 2 3 4
5 6 7 8
2 4 6 7

. Give the dimension of the nullspace as well.

(d) Compute the eigenvalues and eigenvectors of

(
10 3
3 2

)
. Give the answer as a diagonalization.
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3. (20 points) The vector space P2 is the set of polynomials whose degree is at most two. We define

〈p(x), q(x)〉 =
∫ 1

0
xp(x)q(x) dx, which you may assume is an inner product on P2. (Make sure to notice the

extra x in the integral, and remember
∫ 1

0
xn dx = 1

n+1 .)

(a) Calculate an orthogonal basis for the subspace Span{1, x} by performing the Gram-Schmidt process.

(b) Write down the formula for the projection of x2 onto the subspace Span{1, x}. Compute the inner
products which appear in it, but do not simplify the expression any further.
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4. (20 points) Let U be an n × n orthogonal matrix which is also symmetric. Prove that if U − In is an
invertible matrix, then U = −In.
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5. (15 points)
(a) Compute the general solution to y′′′ + 2y′′ + 2y′ = 0.

(b) Find all solutions y(t) which do not converge to 0 as t→∞, and specify what each of these solutions
converges to.
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6. (20 points)

(a) Compute the general solution to ~x′(t) =

(
3 −2
−12 1

)
~x(t).

(b) (No justification required.) Is there a homogeneous solution ~x(t) where, when t→∞,

(i) ‖~x(t)‖ → ∞? YES / NO (ii) ‖~x(t)‖ → 0? YES / NO (circle your responses)

(c) Compute a particular solution to ~x′(t) =

(
3 −2
−12 1

)
~x(t) +

(
2
12

)
et using any method.
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7. (20 points) Let A =

2 1 0
0 2 0
0 0 3

.

(a) What is the dimension of the solution set to the homogeneous system ~x′(t) = A~x(t)?

(b) Compute the general solution to the homogenous system ~x′(t) = A~x(t).


