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YOUR NAME: SOLUTIONS

No calculators, no references, no cheat sheets.
Answers without justification will receive no credit.

Glossary

kerT : the kernel of a linear transformation T .
imT : the image or range of a linear transformation T .
onto: for T : V →W , imT = W .
one-to-one: for T : V →W , kerT = {0}.
basis: a linearly independent spanning set.
dimension: the number of vectors in a basis for a vector space.
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1. (6 points) For each of the following, find all values of a ∈ R (if any) so that the given set of vectors spans R3.

(a) (2 points) 
1

0
0

 ,

1
1
a


This is a set of two vectors, but fewer than three vectors never spans R3. Hence, there are no a.

In other words, to span R3, the equation 1 1
0 1
0 a

 ~x = ~b

must be solvable for all ~b ∈ R3. However, there are only two pivots, not three.

(b) (2 points) 
1

0
0

 ,

0
1
0

 ,

a0
1


Using the matrix idea from before, there are always three pivots no matter the choice fo a. Thus, the
three vectors always span R3, for all a ∈ R.

(b) (2 points) 
1

0
3

 ,

−1
1
1

 ,

1
2
a

−1
2
5


We row-reduce the matrix of vectors:1 −1 1 −1

0 1 2 2
3 1 a 5

 ∼
1 −1 1 −1

0 1 2 2
0 4 a− 3 8

 ∼
1 −1 1 −1

0 1 2 2
0 0 a− 11 0


So, if a = 11, there are only two pivots (in which case the vectors do not span R3), but if a 6= 11, there
are three pivots, and the vectors span R3.
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2. (5 points) Consider the linear transformation T : R3 → R3 defined by

T (~x) =

1 0 −1
2 1 0
3 1 −1

 ~x.

(a) (2 points) Find a basis for imT .

For transformations between Euclidean vector spaces, such as T , the image is the column space of its
standard matrix, and to find a basis for Col[T ], we row-reduce the matrix and take columns from [T ]
corresponding to the pivot columns. Row-reducing:1 0 −1

2 1 0
3 1 −1

 ∼
1 0 −1

0 1 2
0 1 2

 ∼
1 0 −1

0 1 2
0 0 0


Thus, a basis for imT is 

1
2
3

 ,

0
1
1

 .

(b) (2 points) Find a basis for kerT .

Since T is a transformation between Euclidean vector spaces, we can just find a basis for Nul[T ]. We

already have the reduced row-echelon form of [T ], so we solve [T ]~x = ~0 by noting the third column is

free, so all solutions are of the form x3

 1
−2
1

 with x3 ∈ R. Therefore, a basis is


 1
−2
1

 .

(c) (1 point) Find a linear transformation F : V → R3 whose image is kerT , and where F is one-to-one.
You get to choose the vector space V .

A couple options:

(1) Let V = kerT and F : kerT → R3 be defined by F (~x) = ~x. This F is a linear transformation
(since F (~x + ~y) = ~x + ~y = F (~x) + F (~y) and F (c~x) = c~x = cF (~x)). It is one-to-one since

kerF = {~x ∈ kerT : F (~x) = ~0} = {~x ∈ kerT : ~x = ~0} = {~0}, and imF = kerT since
imF = {F (~x) : ~x ∈ kerT} = {~x : ~x ∈ kerT} = kerT .

(Whenever W is a subspace of V , then the map ι : W → V defined by ι(x) = x is called an
“inclusion map” since the vectors of W are included into V . This makes sense since W ⊂ V .)

(2) Let V = R and F : R1 → R3 defined by F (x) =

 1
−2
1

x, which is a linear transformation

because F is defined by a matrix. Then, imF = kerT since imF is the span of the columns of
the matrix, and the columns span kerT . And F is one-to-one since vectors in the columns of
the matrix are independent (since there is only one vector, and it is nonzero).
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3. (6 points) P2 is the vector space of polynomials of degree at most two, with real coefficients.

(a) (3 points) Let S be the set of all polynomials from P2 whose derivative at 0 is 0 (that is, p′(0) = 0).
Show that S is a vector subspace of P2.

A few ways to do this:

(1) We check the three properties for a subspace. First, it has the zero polynomial p(x) = 0 since
the derivative of this polynomial at 0 is 0. Second, when p, q are two polynomials in P2 whose
derivatives at 0 are 0, then (p+ q)′(0) = (p′ + q′)(0) = p′(0)+ q′(0) = 0+0 = 0, so p+ q is also a
polynomial whose derivative at 0 is 0. Third, when p is a polynomial in P2 whose derivative at
0 is 0 and c ∈ R, then (cp)′(0) = cp′(0) = c · 0 = 0, so cp is also a polynomial whose derivative
at 0 is 0. (By the way, we know p+ q and cp are in P2 because P2 is a vector space.)

(2) Define T : P2 → R by T (p) = p′(0). Then, S = kerT , and kernels are always subspaces.
(3) Consider an arbitrary polynomial p(x) = ax2 + bx+ c from P2. Then p′(x) = 2ax+ b, and the

requirement p′(0) = 0 amounts to saying 2a · 0 + b = 0, so b = 0. Thus, S = Span{1, x2}, and
spans are always subspaces.

(b) (1 point) What is the dimension of S?

By doing the calculation in option 3 from the first part, we see S = Span{1, x2}, and since these two
polynomials are linearly independent (they are elements of the “standard basis” for P after all), we see
S has a basis of two polynomials. Hence, dimS = 2.

Or, using option 2, notice the image of T is all of R (for instance, T (cx) = c for all c), so dim imT = 1.
Since dimP2 = 3, and since dim imT + dim kerT = dimP2, we have dimS = dim kerT = 3− 1 = 2.

(c) (2 points) Let T : P2 → P2 be defined by T (p) = p(x− 1)− p(x). (For instance, T (x2 + 1) = ((x− 1)2 +
1)− (x2 + 1).) What are kerT and imT? Describe them by finding a basis for each.

To see what is going on, we calculate

T (ax2 + bx+ c) = (a(x− 1)2 + b(x− 1) + c)− (ax2 + bx+ c)

= ax2 − 2ax+ a+ bx− b+ c− ax2 − bx− c
= −2ax+ a− b.

For kerT , we are solving T (ax2 + bx + c) = 0, so solving −2ax + a − b = 0. Then, a = 0 and b = 0,
which leaves c free, so kerT = {c ∈ R} = Span{1}.

For imT , we are finding all possible values T (ax2+bx+c), so finding all possible values −2ax+a−b =
a(−2x+1)− b. This is Span{−2x+1, 1}, which is the same as Span{x, 1} after replacement and scaling
(either of these two is a fine basis).
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4. (5 points) Let A be an n×m matrix and B be an m× n matrix such that BA = Im.

(a) (2 points) What is the dimension of ColB?

Intuition: ColB has to be the same as the column space of Im. Basically, where would the m pivots
come from?

Beware: BA = Im does not mean A or B are invertible. For instance,(
1 0

)(1
1

)
=
(
1
)
.

A way to solve this is to first figure out ColB. Remember ColB is all B~x for all ~x ∈ Rn. Let
~y ∈ Rm. Then, BA~y = Im~y = ~y. So, for every ~y ∈ Rm, then B(A~y) = ~y (and A~y ∈ Rn is one of those
~x mentioned above). This means ColB = Rm. Hence, dim ColB = m.

Or, in other words, for a vector ~y ∈ Rm, we have BA~y = Im~y. This gives us B(A~y) = ~y, so whenever
we want to solve B~x = ~y, we may as well let ~x = A~y. This implies the columns of B span Rm, so
ColB = Rm.

(b) (2 points) What is the dimension of NulA?

Let us figure out NulA. Let ~y ∈ Rm be a vector where A~y = ~0. Then BA~y = B~0, which simplifies to
Im~y = ~0, and so ~y = 0. This means the only vector in NulA is the zero vector. Thus, dim NulA = 0.

(c) (1 point) Which of the following cannot happen? n > m or m > n? Explain why not.

What cannot happen is m > n. Two reasons, either is sufficient by itself:

(1) If m > n, then B would have more rows than columns, which by a theorem from the book
means the columns of B do not span Rm, which means ColB 6= Rm, contradicting part (a).

(2) If m > n, then A would have more columns than rows, forcing A to have free columns, which
would mean NulA is nontrivial, contradicting part (b).
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For fun. (0 points) Let A be an n×n matrix such that A2 = A. Which vectors are in both ColA and NulA?

We will show that the only vector in both ColA and NulA is the zero vector. Let v be a vector which
is in both. Since v ∈ ColA, v is a linear combination of the columns of A, so there is some x ∈ Rn

such that v = Ax. Since v ∈ NulA, we have Av = 0. Now, apply A to both sides of v = Ax to get
Av = A2x. Since Av = 0, this becomes 0 = A2x, and since A2 = A, this becomes 0 = Ax (implying
x ∈ NulA, too). Since v = Ax, then v = 0. Therefore, the only vector in both is the zero vector.


