
Schur factorization

Kyle Miller

31 March 2016

For the 3:30 discussion, I only showed that the A′ matrix had the same eigenvalues as
A (less λ1), but I didn’t actually show that the multiplicity itself carried over, which was a
large mistake on my part. The good news is that there is an easier way which both shows A′

has the same eigenvalues and shows they occur with the same multiplicity. This version will
be given below. I am giving the whole proof in full to make sure no other mistakes remain.

Theorem 1. Let A be an n× n matrix with n real eigenvalues (with multiplicity). Then A
can be written as A = URUT with U orthogonal and R upper triangular n× n matrices.

Proof. We prove this by induction on n.

• If n = 1, then A =
(
a
)

for some a, and A =
(
1
) (
a
) (

1
)T

.

• If n > 1 and Schur factorization works for matrices of size (n− 1)× (n− 1), then:

– Let λ1, . . . , λn be the real eigenvalues (with multiplicity), which we know exist by
hypothesis.

– Let u1 be an eigenvector of unit length with eigenvalue λ1. There is one: take any
eigenvector associated with λ1 (i.e., any vector in the nontrivial Nul(A − λ1In))
and normalize it.

– Let u2, . . . , un ∈ Rn be vectors so that {u1, . . . , un} is an orthonormal basis. One
way to do this:

∗ Create a basis {u1, v2, . . . , vn} for Rn by iteratively taking a vector vk+1 not
in the span of {u1, v1, . . . , vk} so far, and add it to the set. The resulting set
{u1, v1, . . . , vk+1} is independent by construction. This process must termi-
nate with n vectors because Rn is n-dimensional.

∗ Orthonormalize by Gram-Schmidt. Since u1 is unit-length, u1 stays the same
in the resulting orthonormal basis.

– Let V =
(
v1 · · · vn

)
, which is an orthogonal matrix.

– The matrix of A relative to this basis has λ1e1 as its first column.

∗ The matrix for A relative to this basis is V −1AV , which, since V is orthogonal,
is V TAV .
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∗ The first column of a matrix B is Be1, since the standard matrix of a linear
transformation T is

(
T (e1) · · · T (en)

)
, and the standard matrix of a matrix

is the matrix.

∗ So, we calculate V TAV e1.

∗ Since V e1 is the first column of V , we now have V TAu1.

∗ Since u1 is an eigenvector of A, we now have V Tλ1v1 = λ1V
Tv1.

∗ Since V T = V −1 and v1 = V e1, then V Tv1 = e1, so we now have λ1e1.

∗ Thus, V TAV e1 = λ1e1.

– Then V TAV is of the form

V TAV =


λ1 ∗ · · · ∗
0

A′...
0


where A′ is some (n− 1)× (n− 1) matrix.

– The eigenvalues of A′, with multiplicity, are λ2, . . . , λn.

∗ The characteristic polynomial of A is |A− λIn|.
∗ Since V TV = 1, |V T ||V | = 1, so the characteristic polynomial equals |V T ||A−
λIn||V | = |V T (A− λIn)V | = |V TAV − λIn|.
∗ Using the form we calculated for V TAV , this becomes∣∣∣∣∣∣∣∣∣

λ1 − λ ∗ · · · ∗
0

A′ − λIn−1...
0

∣∣∣∣∣∣∣∣∣
∗ Expanding along the first column, this gives (λ1 − λ)|A′ − λIn−1|.
∗ Then |A− λIn| = (λ1 − λ)|A′ − λIn−1|, so we have related the characteristic

polynomials of A and A′.

∗ Thus, since λ1 is a root of the characteristic polynomial for A, the rest of the
roots λ2, . . . , λn must be roots of the characteristic polynomial for A′ with
the same multiplicities.

– Then, since we are assuming Schur factorization works for (n − 1) × (n − 1)
matrices, and since A′ is such with n− 1 real eigenvalues, with multiplicity, then
A′ = W ′R′(W ′)T for some orthogonal W ′ and upper triangular R′ (n−1)×(n−1)
matrices.

– The matrix (
0 · · · 0

W ′

)
obtained by inserting a 0 before each column of W ′ is still an orthogonal matrix,
since the columns are still orthogonal and unit length.
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– There are n−1 orthonormal vectors in this matrix, which we label by w2, . . . , wn.
Then {e1, w2, . . . , wn} is an orthonormal basis of Rn, since e1 ·wi = 0 for 2 ≤ i ≤ n.
Let W be the orthogonal matrix with this basis as columns.

– Claim:

W T


λ1 ∗ · · · ∗
0

A′...
0

W

is upper triangular. Let this matrix be R.

∗ The first column of R is λ1e1. We compute this via Re1.

· Since We1 = e1, then we need to multiply the inner matrix by e1, which
is λ1e1.

· Then, multiplying by W T , we have λ1W
T e1 = λ1e1.

· Thus, the first column of R is λ1e1, which so far satisfies R being upper
triangular.

∗ For the remaining columns R has R′ in place of A′, with the ∗ entries replaced
by some other scalars. Let 2 ≤ i ≤ n.

· Since Wei = wi, we need to multiply the inner matrix by wi, which, since
the first component of wi is 0, is (with w′i being the vector consisting of
the entries of wi after the 0)

stuff · w′i

A′w′i

 =


stuff · w′i

W ′R′(W ′)Tw′i


where W ′R′(W ′)Tw′i = W ′R′ei−1. Then, the above vector is (stuff·w′i)e1+
Wr, where r is R′ei−1 (column i− 1 of R′) with a zero entry inserted at
the beginning.

· When this vector is multiplied by W T = W−1, we then have W−1((stuff ·
w′i)e1 +Wr) = (stuff · w′i)W−1e1 +W−1Wr = (stuff · w′i)e1 + r.

· Thus, the column is a column of R′ with some scalar inserted before the
first entry.

∗ Together, these imply R is of the form
λ1 ∗ · · · ∗
0

R′...
0

 ,

and this is upper triangular since R′ is.

– So, W TV TAVW = R. Let U = VW , so then A = URUT . The product of
orthogonal matrices is orthogonal, so U is orthogonal, and R is upper triangular.
Therefore, this is a Schur factorization for A.
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• Therefore, the factorization can be done for all n ≥ 1.
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