Another solution for midterm 2's problem 4

Kyle Miller

29 March 2016

Probably because of Spring break, I completely forgot to show you a much better solution to the fourth problem on the midterm today. This is definitely what Prof. Yuan had in mind when he created the exam, since Gram-Schmidt takes too much work.

To remind you, this is problem 4 in full:

4. (5 points) Let W be the subspace of \mathbb{R}^4 given by $x_1 + x_2 + x_3 + x_4 = 0$. Compute the orthogonal projection $\operatorname{proj}_W(\vec{v})$ of the vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ to the space W.

First observation: $\operatorname{proj}_W \vec{v} + \operatorname{proj}_{W^{\perp}} \vec{v} = \vec{v}$. If we can calculate $\operatorname{proj}_{W^{\perp}} \vec{v}$ easily, then it is a quick calculation to get $\operatorname{proj}_W \vec{v}$. It should be easy: dim $W^{\perp} = 1$ since dim W = 3 (which is because W is the nullspace of $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 \end{pmatrix}$), so W^{\perp} is the span of a single vector. Now,

$$W^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}.$$

Here are a couple of justifications:

- Recall that $(\operatorname{Nul} A)^{\perp} = \operatorname{Row} A. W^{\perp} = (\operatorname{Nul} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix})^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$
- Saying that $x_1 + x_2 + x_3 + x_4 = 0$ is the same as saying $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \cdot \vec{x} = 0$, so W is already

$$\left(\operatorname{Span}\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix}\right\}\right)^{\perp}. \text{ Then } W^{\perp} = \left(\left(\operatorname{Span}\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix}\right\}\right)^{\perp}\right)^{\perp} = \operatorname{Span}\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix}\right\}.$$

Let
$$\vec{u} = \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$$
. Then $\operatorname{proj}_{W^{\perp}} \vec{v} = \frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} = \frac{10}{4} \vec{u} = \frac{5}{2} \vec{u}$.
Thus, $\operatorname{proj}_{W} \vec{v} = \vec{v} - \operatorname{proj}_{W^{\perp}} \vec{v} = \vec{v} - \frac{5}{2} \vec{u} = \begin{pmatrix} -3/2\\ -1/2\\ 1/2\\ 3/2 \end{pmatrix}$.

1 Another solution to problem 6

For the 3:30–5:00pm section, I gave a solution to problem 6 involving Gauss-Jordan elimination. This was not a good solution, and what I said then should be disregarded. The G-J elimination solution works much better like this:

- Comparing rank(AB) and rank(A) is the same as comparing rank($B^T A^T$) and rank(A^T), since transposition does not change rank.
- Since B is invertible, so is B^T , so the reduced row-echelon form of B^T is I_n .
- The sequence of row operations correspond to elementary matrices, hence $B^T = E_1 \cdots E_n$, a product of elementary matrices.
- Then $B^T A^T = E_1 \cdots E_n A^T$.
- But this is row-equivalent to A^T since the difference is a bunch of elementary row operations (represented by E_1, \ldots, E_n).
- That is, $B^T A^T \sim A^T$.
- Thus $\operatorname{rank}(B^T A^T) = \operatorname{rank}(A^T)$.
- Therefore $\operatorname{rank}(AB) = \operatorname{rank}(A)$.