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Now that we have familiarity with Rn, we can try to think about exactly which properties
about Rn are the ones we most like. Mathematicians have decided that addition and scalar
multiplication, along with some coherence properties, are the essential properties of a vector
space:

Definition 1. A (real)1 vector space is the following ingredients:

• a nonempty set V of vectors;2

• an addition operation + : V × V → V ;3

• a scalar multiplication operation R× V → V ;

• the following properties: (assume u, v, w ∈ V and c, d ∈ R)

1. There is an additive identity 0 ∈ V .4 (That is, 0 + v = v + 0 = v.)

2. Addition is commutative. (That is, v + w = w + v.)

3. Addition is associative. (That is, u + (v + w) = (u + v) + w. This amounts to
saying that you don’t need parentheses for addition. Compare to subtraction.)

4. There are additive inverses. (That is, there is a vector −v for each v such that
v + (−v) = (−v) + v = 0. When we write v − w, we actually mean v + (−w).)

5. Addition and scalar multiplication distribute. (That is, c(v + w) = cv + cw.)

6. Addition of scalars and scalar multiplication distribute. (That is, (c + d)v =
cv + dv.)

7. Scalar multiplication is an action with respect to multiplication of scalars. (That
is, c(dv) = (cd)v.)

8. 1 ∈ R is the identity action. (That is, 1v = v).

1vs. complex; that is, R vs C for the set of scalars.
2Thus a “vector” is determined by which vector space you’re talking about.
3This is read as “plus is an operation taking a pair of vectors in V to a vector in V .” The book talks

about “closure of addition,” but the definition here amounts to the same thing.
4We use 0 to denote the additive identity no matter the vector space.
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It is mathematical convention to use synecdoche and metonymy whenever it makes saying
things simpler, which is a practice neophytes can find somewhat confusing. So, while a
vector space is all of these things together (a set of vectors, and addition operation, a scalar
multiplication, and some properties these three must together have), we tend to call the
set of vectors the vector space, assuming the reader or listener is able to understand from
context the addition and scalar multiplication. For instance, we say Rn is a vector space,
assuming the standard addition and scalar multiplication. If it’s unclear which vector space
the set of vectors might be standing in for, you can always ask something like “what’s the
addition operation?”

It is a good exercise to prove basic things about general vector spaces that are true about
all vector spaces. Here are some examples.5

1. For every vector u ∈ V , 0u = 0. (The first 0 is 0 ∈ R, and the second 0 is 0 ∈ V . I’m
not using vector hats so that you get used to it.)

0 = 0u + (−(0u)) by property 4. Using the fact that 0 + 0 = 0 in R, we can see
0u = (0 + 0)u, so substituting we have 0 = (0 + 0)u+ (−(0u)), and by property 6, this
is 0 = (0u + 0u) + (−(0u)). By associativity, this is 0 = 0u + (0u + (−(0u)), and by
property 4, this is 0 = 0u + 0, which is 0 = 0u by property 1.

2. For every scalar c ∈ R, c0 = 0.

You can figure out which properties we use in this: 0 = c0 + (−(c0)) = c(0 + 0) +
(−(c0)) = c0 + c0 + (−(c0)) = c0 + 0 = c0. Hence, 0 = c0.

3. For every u ∈ V , −u = (−1)u. (Note carefully, we are saying the additive inverse
is equal to scaling by −1. Hence, from now on, we can pretend these two different
operations are actually the same operation.)

Using 0 = 0u, we have −u = −u + 0 = −u + (1 − 1)u = −u + 1u + (−1)u =
−u + u + (−1)u = 0 + (−1)u = (−1)u.

Other things you can prove: that there is only one additive identity (so if 0 and 0′ are
both additive identities, prove 0 = 0′), that there is only one additive inverse (so if u and u′

are both additive inverses of v, then u = u′), and if cv = v then either c = 1 or v = 0.
The following are examples of vector spaces. For each of them, decide what addition and

scalar multiplication are and check to the best of your ability that each of the required eight
properties hold, and, for instance, what is the zero vector:

• R with its normal addition and multiplication

• (non-example) R with vector addition being multiplication

• Rn as column vectors

5The way I do them might seem a little awkward; that is because I don’t want to have to reason about
doing things to both sides being reversible. Try coming up with your own arguments from the properties in
a way you find pleasing.
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• Arrows in 3D space, modulo translation (this means that two vectors are equivalent
if they are equal after a suitable translation. Modulo is a good word to know: for
instance, two numbers are the same modulo n if they are different by a multiple of n.)

• The set of convergent sequences. Be sure to check that addition of convergent sequences
is convergent, and that scalar multiplication of a convergent sequence is convergent.

• The set of polynomials (denoted P).

• The set of polynomials of degree at most n (denoted P). The degree of a polynomial
is the largest n in any cxn present in the polynomial, where c 6= 0. We presume the
zero polynomial always has degree at most n.

• The set of real-valued continuous function C(R) = {f : R→ R|f is continuous}.

• The set of real-valued infinitely differentiable (i.e., smooth) functions C∞(R) = {f :
R→ R| dn

dxnf(x) continuous for all n}.

• The set of all power series
∑∞

n=0 anx
n with radius of convergence nonzero.

These are all legitimate examples of vector spaces that are actually used. Not one is
pathological!

In algebra, the way things always work is you define algebraic objects (in this case vector
spaces), maps between them (linear transformations; though we haven’t defined them for
vector spaces, they are essentially the same as before), and some sort of sub- object, which
is in our case a vector subspace.

Definition 2. A vector subspace (or subspace for short) is a subset W of a vector space V
which is a vector space which inherits addition and scalar multiplication from V . This means
for u, v ∈ W , u + v (with addition in W ) equals u + v (with addition in V ), and similarly
for scalar multiplication.

A useful set notation is W ⊂ V to mean W is a subset of V . When I use the symbol,
this means W might equal V . When I want a proper subset, which is a subset that doesn’t
equal V , I write W ( V . Sometimes, others write W ⊂ V for proper subset, and W ⊆ V
for when W might equal V . Confusing.

There is a convenient way to check whether something is a vector subspace. In fact, the
book just jumps to these conditions being the definition, though I prefer thinking of the
following as a theorem:

Theorem 1. For a subset W of a vector space V , the following conditions are equivalent to
W being a subspace of V :

• 0 ∈ W .

• W has closure under addition (that is, for u, v ∈ W , then u + v ∈ W ).

• W has closure under scalar multiplication (that is, for c ∈ R and u ∈ W , then cu ∈ W ).
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Just to get the idea down, remember the metonymy: we are saying that if these three
conditions hold, then there is a vector space structure making W a vector space, with all of
the right properties and addition and scalar multiplication (inherited in a straightforward
way from V ).

In practice, these three conditions are much easier to check than showing W is a subspace
straight from the definition.

Here are some examples. For each of these, check each of the three conditions:

• For V a vector space, V is a vector subspace of V .

• For V a vector space, {0} ⊂ V is a vector subspace of V (called the zero subspace).

• {(x1, x2, . . . , xn−1, 0)|x1, . . . , xn ∈ R} ⊂ Rn (the set of all vectors in Rn whose last
component is 0).

• We have a chain of subspaces: Pn ⊂ P ⊂ C∞(R) ⊂ C(R).

• Nonexample: R2 is not a subspace of R3. This is a category error. 2× 1 matrices just
aren’t 3× 1 matrices.

• Nonexample: {(x, y)|x + y = 1} ⊂ R2 (missing 0)

• Nonexample: {(x, 0)|x ∈ R} ∪ {(0, y)|y ∈ R} ⊂ R2, the union of the x-axis and the
y-axis (contains 0 but not closed under addition; consider e1 and e2).

• Nonexample: {(x, y)|x, y ∈ R, x ≥ 0} ⊂ R2 (contains 0 and is closed under addition,
but not closed under scalar multiplication; consider −e1).

• For U,W subspaces of V , consider the intersection U ∩W . This is a subspace because
1) 0 ∈ U and 0 ∈ W , so 0 ∈ U ∩W , 2) for v1, v2 ∈ U ∩W , then both vectors are in
both U and W , so we can do addition in U and in W , where the result lies in U and
W , so v1 + v2 ∈ U ∩W , 3) exercise.

• The span of v1, . . . , vn ∈ V . This is an extremely important example; most of our effort
will be going into describing subspaces as spans of some collection of vectors.
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