Quiz 7

1. (5 points) Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ are two bases of some vector space V, with $\vec{b}_1 = 3\vec{c}_1 + 5\vec{c}_2$ and $\vec{b}_2 = \vec{c}_1 + 2\vec{c}_2$.

- (a) Find the change-of-coordinates matrix P from β to C. (In other words, a P which satisfies $P[\vec{x}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{C}}$ for all $\vec{x} \in V$.)
- (b) Find the change-of-coordinates matrix Q from C to B .
- (c) What is QP equal to?

(a) The first column of P is $[\vec{b}_1]_C = [3\vec{c}_1 + 5\vec{c}_2]_C = (\frac{3}{5})$. Similarly, the second column is $[\vec{b}_2]_C = (\frac{1}{2})$. Thus, $P = (\frac{3}{5}\frac{1}{2})$. (b) Since $P[\vec{x}]_B = [\vec{x}]_C$ for all $\vec{x} \in V$, then since P is invertible, $[\vec{x}]_B = P^{-1}[\vec{x}]_C$ for all $\vec{x} \in V$, so then P^{-1} is the change-of-coordinates matrix from C to B. Thus, $Q = P^{-1} = \begin{pmatrix} 2 & -1 \\ -5 & 2 \end{pmatrix}$. Or,

we solve for \vec{c}_1 and \vec{c}_2 in terms of \vec{b}_1 and \vec{b}_2 and do the same thing as in part (a).

(c) P takes B-coordinates to C-coordinates, and Q does the inverse, so $QP = I_2$.

- 2. (5 points) Suppose $\vec{v} \in \mathbb{R}^4$ and $\vec{w} \in \mathbb{R}^3$, both nonzero, and let $A = \vec{v}\vec{w}^T$.
	- (a) What is the size of A? (Give as $n \times m$ for some n and m.)
	- (b) What is rank A?
	- (c) What is dim Nul \hat{A} ?

(a) Since \vec{v} is 4×1 and \vec{w} is 3×1 , the product is between a 4×1 and a 1×3 matrix, so A is 4×3 .

(b) The product gives $A = (w_1 \vec{v} \quad w_2 \vec{v} \quad w_3 \vec{v})$. Since \vec{w} is nonzero, at least one of the three columns of A is nonzero, and the other two columns are multiples of that column. This means A is rank 1. Said another way,

rank $A = \dim \text{Col } A = \dim \text{Span } \{w_1 \vec{v}, w_2 \vec{v}, w_3 \vec{v} \} = \dim \text{Span } \{\vec{v}\} = 1$

(c) The rank theorem gives dim Nul $A = 3 - \text{rank } A = 3 - 1 = 2$.

(For fun) What is the dimension of the subspace of polynomials from \mathbb{P}_2 which have 1 as a root?

Reason 1. If a polynomial has 1 as a root, by long division it is divisible by $(x - 1)$. So, for a $p(x) \in \mathbb{P}_2$ with 1 as a root, $p(x) = (x-1)q(x)$ for some $q(x) \in \mathbb{P}_1$. We can produce such polynomials by letting $q(x)$ be anything, and every choice of q produces a distinct polynomial $(x-1)q(x)$, so the dimension of the subspace is exactly the same as the dimension of \mathbb{P}_1 , which is 2.

Reason 2. Let $T : \mathbb{P}_2 \to \mathbb{R}$ be defined by $T(p(x)) = p(1)$. Then, the subspace we are wondering about is ker T. The matrix of T relative to the standard basis $\mathcal{B} = \{1, x, x^2\}$ for \mathbb{R}_2 is $A = (111)$, and dim Nul $A = 2$, so dim ker $T = 2$.

Reason 3. If $p(x) = a + bx + cx^2$ has 1 as a root, then $0 = p(1) = a + b + c$. Any solution to this homogeneous equation is a polynomial with 1 as a root, and the dimension of this solution space is 2 since the coefficient matrix has 2 free columns.

Reason 4. Let $T : \mathbb{P}_1 \to \mathbb{P}_2$ be defined by $T(p(x)) = (x - 1)p(x)$. By long division, any

polynomial which has 1 as a root is an image of T , and also every image of T is evidentally a polynomial with 1 as a root, so $\text{im } T$ is the subspace we are wondering about. T is injective since whenever $T(p(x)) = 0$, then by dividing both sides by $(x - 1)$, we get $p(x) = 0$. Thus, $\dim \mathrm{im} \, T = \dim \mathbb{P}_1 = 2.$