Quiz 7

1. (5 points) Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ are two bases of some vector space V, with $\vec{b}_1 = 3\vec{c}_1 + 5\vec{c}_2$ and $\vec{b}_2 = \vec{c}_1 + 2\vec{c}_2$.

- (a) Find the change-of-coordinates matrix P from \mathcal{B} to \mathcal{C} . (In other words, a P which satisfies $P[\vec{x}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{C}}$ for all $\vec{x} \in V$.)
- (b) Find the change-of-coordinates matrix Q from \mathcal{C} to \mathcal{B} .
- (c) What is QP equal to?

- 2. (5 points) Suppose $\vec{v} \in \mathbb{R}^4$ and $\vec{w} \in \mathbb{R}^3$, both nonzero, and let $A = \vec{v}\vec{w}^T$.
 - (a) What is the size of A? (Give as $n \times m$ for some n and m.)
 - (b) What is $\operatorname{rank} A$?
 - (c) What is $\dim \operatorname{Nul} A$?

(For fun) What is the dimension of the subspace of polynomials from \mathbb{P}_2 which have 1 as a root?