
MATH 54. October 7, 2016. (20 minutes, 10 points) Solutions

Quiz 6

1. Let W = {A ∈ R2×2 : AT = A} (the set of 2× 2 symmetric matrices).

(a) (4 points) Show that W is a subspace of R2×2.

(b) (1 point) Find a basis for W .

(a) We just need to show the three properties:

• Since ( 0 0
0 0 )

T
= ( 0 0

0 0 ), W contains the zero matrix (the “zero vector”).

• If A,B are two two-by-two matrices with AT = A and BT = B, then (A + B)T =
AT + BT = A + B, so A + B ∈W , too.

• If c ∈ R and A is a two-by-two matrix with AT = A, then (cA)T = cAT = cA, so cA ∈W ,
too.

Alternatively, W is the kernel of T (A) = AT −A, and kernels are subspaces.
(b) AT = A is just an equation, which we can understand by looking at the entries of A.
Suppose A =

(
a b
c d

)
. Then AT = A means

(
a d
b d

)
=
(
a b
c d

)
, which only implies b = c. Thus,

vectors of W are just matrices
(
a b
b d

)
for any a, b, d. This can be rewritten as

a

(
1 0
0 0

)
+ b

(
0 1
1 0

)
+ d

(
0 0
0 1

)
These three matrices are a spanning set for W . They are independent because the only way to
write the zero matrix as a linear combination of them is to take zero of each. Thus, a basis is{(

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)}
2. (5 points) For the following set W , (a) find a matrix A so that W = ColA, (b) explain why W
is a subspace, and (c) give its dimension.

W =

{(
a + 2b + 4c

b + 3c

)
: a, b, c ∈ R

}

(a) We can just manipulate the definition of W until it looks like ColA for some A.{(
a + 2b + 4c

b + 3c

)
: a, b, c ∈ R

}
=

{
a

(
1
0

)
+ b

(
2
1

)
+ c

(
4
3

)
: a, b, c ∈ R

}

=


(

1 2 4
0 1 3

)a
b
c

 : a, b, c ∈ R


=

{(
1 2 4
0 1 3

)
~x : ~x ∈ R3

}
= Col

(
1 2 4
0 1 3

)
(b) Column space of a matrix is always a subspace, and W is a column space. Alternatively,
the matrix we found has a pivot in every now, so every vector of R2 is in W , and R2 is a
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subspace.
(c) Since W = ColA, dimW = dim ColA. The number of pivots in A is 2, so dimW = 2.

(For fun) A square matrix A which satisfies AT = A is called symmetric, and a square matrix A
which satisfies AT = −A is called antisymmetric. Give a way to write any given square matrix as
a sum of a symmetric and an antisymmetric matrix. Is this representation unique?

Basically, the average of a matrix and its transpose is a symmetric matrix, and if you subtract
that average from the original matrix, you get an antisymmetric matrix. The sum of these two
things is the original matrix.
Let T (A) = 1

2(A+AT ). The image is symmetric since T (A)T = 1
2(AT +(AT )T ) = 1

2(AT +A) =
T (A). The image of a symmetric matrix is itself, since if A = AT , then T (A) = 1

2(A+A) = A, so
T (T (A)) = T (A). The matrix A−T (A) is antisymmetric since (A−T (A))T = AT− 1

2(A+AT ) =
−A + 1

2(A + AT ) = −(A − T (A)). And, T (A) + (A − T (A)) = A, which means A is the sum
of a symmetric and antisymmetric matrix.
Here is a reason it is a unique representation. If a matrix has two representations, then by
subtracting them we get some representation of the zero matrix 0 = A+B, with A symmetric
and B antisymmetric. Since 0 is symmetric, 0 = 0T = AT + BT = A − B, so A = B. But,
0 = A + B means A = −B, so A = 0 and B = 0.
Another way to look at all of this is that the set of n × n matrices is the direct sum of two
subspaces, the subspace of symmetric matrices and the subspace of antisymmetric matrices.
The only matrix which is both symmetric and antisymmetric is the zero matrix, so any matrix
which is the sum of a symmetric and an antisymmetric matrix can be represented as such in
exactly one way. Also, the dimension of symmetric is equal to the number of entries on or
above the diagonal (since the entries below the diagonal are determined by those entries) and
the dimension of antisymmetric matrices is equal to th enumber of entries strictly above the
diagonal (for the same reason, and because AT = −A implies the diagonal entries are all zero).
The sum of these dimensions is n2, which is the dimension of Rn×n, they together span all of
Rn×n.


