Quiz 4

1. (3 points) For each statement following each matrix shape, circle YES if there is a matrix with that shape where the statement is true, and NO if there is no such matrix.

- (a) For a 3×3 matrix:
 - (i) The columns might span \mathbb{R}^3 : YES / NO
 - (ii) The columns might not span \mathbb{R}^3 : YES / NO
 - (iii) The columns might be independent: YES / NO
 - (iv) The columns might not be independent: YES / NO
- (b) For a 3×4 matrix:
 - (i) The columns might span \mathbb{R}^3 : YES / NO
 - (ii) The columns might not span \mathbb{R}^3 : YES / NO
 - (iii) The columns might be independent: YES / NO
 - (iv) The columns might not be independent: YES / NO

(c) For a 3×2 matrix:

- (i) The columns might span \mathbb{R}^3 : YES / NO
- (ii) The columns might not span \mathbb{R}^3 : YES / NO
- (iii) The columns might be independent: YES / NO
- (iv) The columns might not be independent: YES / NO

2. (5 points) For each of the following matrix shapes, complete the corresponding table with all possibilities for rank A and dim Nul A. Cross out impossible lines.

(a) A is 4×4		(b) A is 2×4		(c) A is 4×2	
$\operatorname{rank} A$	$\dim\operatorname{Nul} A$	$\operatorname{rank} A$	$\dim \operatorname{Nul} A$	$\operatorname{rank} A$	$\dim \operatorname{Nul} A$
0		0		0	
1		1		1	
2		2		2	
3		3		3	
4		4		4	

3. (2 points) Compute det $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 4 & 0 \end{pmatrix}$.

(For fun) Is the inverse of an invertible upper triangular matrix always upper triangular?