Quiz 3

- 1. (5 points) The transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x_1, x_2, x_3) = (x_2, x_1 + x_3, x_2 x_1)$.
 - (a) Write T as a matrix transformation.
 - (b) Is T injective (one-to-one)?
 - (c) Is T surjective (onto)?

The columns of the standard matrix are T evaluated on the standard basis.

$$T(\vec{e}_1) = T(1,0,0) = (0,1+0,0-1) = (0,1,-1)$$

$$T(\vec{e}_2) = T(0,1,0) = (1,0+0,1-0) = (1,0,1)$$

$$T(\vec{e}_3) = T(0,0,1) = (0,0+1,0-0) = (0,1,0)$$

Thus,

$$T(\vec{x}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \bar{x}$$

Row reducing this matrix gets $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ so the matrix for T has three pivot columns. There is a pivot in every column, so T is injective, and there is a pivot in every row, so T is surjective. $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 0 \\ -1 & 1 & 1 \end{pmatrix}$ is the inverse matrix of the standard matrix of T, so T is invertible, which In fact, implies T is both injective and surjective.

2. (5 points)

- (a) Compute the inverse A^{-1} for $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 8 \end{pmatrix}$.
- (b) Solve $AX = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 3 & 5 \end{pmatrix}$ for the 3×3 matrix X.

We compute the inverse by using $[A | I_3] \sim [I_3 | A^{-1}]$.

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 1 & 4 & 8 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 3 & 7 & -1 & 0 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & -3 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 1 & 0 & -1 & 3 & -1 \\ 0 & 1 & 0 & -5 & 7 & -2 \\ 0 & 0 & 1 & 2 & -3 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 & 4 & -4 & 1 \\ 0 & 1 & 0 & -5 & 7 & -2 \\ 0 & 0 & 1 & 2 & -3 & 1 \end{pmatrix}$$

So we now know $A^{-1} = \begin{pmatrix} 4 & -4 & 1 \\ -5 & 7 & -2 \\ 2 & -3 & 1 \end{pmatrix}$. (Multiplying $A^{-1}A$ we can check that it is indeed I_3 .) To solve the equation, we left multiply each side by A^{-1} since $A^{-1}AX = X$ to get

$$X = \begin{pmatrix} 4 & -4 & 1 \\ -5 & 7 & -2 \\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 3 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Alternatively, one could solve this by noting $AX = [A\vec{x}_1 \ A\vec{x}_2 \ A\vec{x}_3]$. and then trying to find the columns one at a time. For instance, $A\vec{x}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$ is easily solved with $\vec{x}_1 = \vec{e}_1$, since the first column of A is $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

(For fun) For an $n \times m$ matrix A and an $m \times n$ matrix B, show that if the columns of A do not span \mathbb{R}^n , then neither do the columns of AB. (But, if the the columns of B span \mathbb{R}^m , then the span of the columns of A equals the span of the columns of AB.)

Let's prove this by the contrapositive. We will show that if the columns of AB do span \mathbb{R}^n , then so do the columns of A. Let $\vec{b} \in \mathbb{R}^n$ be an arbitrary vector, and then we will show that $A\vec{x} = \vec{b}$ has a solution (which would imply that the columns of A span \mathbb{R}^n). Since the columns of AB span \mathbb{R}^n , let \vec{v} be a solution to $AB\vec{v} = \vec{b}$. Then $\vec{x} = B\vec{v}$ is a solution to $A\vec{x} = \vec{b}$. (So, if the columns of A don't span \mathbb{R}^n , neither do the columns of AB.)

Using more recent notation, $\operatorname{Col} AB \subset \operatorname{Col} A$. This means if $\operatorname{Col} A \neq \mathbb{R}^n$, then $\operatorname{Col} AB \neq \mathbb{R}^n$ either.

If the columns of B span \mathbb{R}^m , then suppose \vec{b} is a vector where $A\vec{x} = \vec{b}$ has a solution. Then, $B\vec{v} = \vec{x}$ has a solution as well, which means $AB\vec{v} = \vec{b}$. Since we showed every vector in Col A is a vector in Col AB, then if the columns of B span \mathbb{R}^m , then Col AB = Col A.

(For fun) If A is $n \times n$ with $A^T A = I_n$, how can you solve $A\vec{x} = \vec{b}$ without computing A^{-1} ?

By left-multiplying both sides by A^T , since then $A^T A \vec{x} = \vec{x}$, which means $\vec{b} = A^T \vec{b}$. In other words, since A is square and $A^T A = I_n$, A^T just is A^{-1} .

Note that if A is not square and $A^T A = I$, then we would again get $\vec{x} = A^T \vec{b}$, but beware: this is only saying that if $A\vec{x} = \vec{b}$ had a solution, then it must be $A^T \vec{b}$. The system might not have any solution at all!