
MATH 54. September 16, 2016. (20 minutes, 10 points) SOLUTIONS

Quiz 3

1. (5 points) The transformation T : R3 → R3 is defined by T (x1, x2, x3) = (x2, x1 + x3, x2 − x1).
(a) Write T as a matrix transformation.
(b) Is T injective (one-to-one)?
(c) Is T surjective (onto)?

The columns of the standard matrix are T evaluated on the standard basis.

T (~e1) = T (1, 0, 0) = (0, 1 + 0, 0− 1) = (0, 1,−1)

T (~e2) = T (0, 1, 0) = (1, 0 + 0, 1− 0) = (1, 0, 1)

T (~e3) = T (0, 0, 1) = (0, 0 + 1, 0− 0) = (0, 1, 0)

Thus,

T (~x) =

 0 1 0
1 0 1
−1 1 0

 ~x

Row reducing this matrix gets
(

1 0 1
0 1 0
0 0 1

)
so the matrix for T has three pivot columns. There is

a pivot in every column, so T is injective, and there is a pivot in every row, so T is surjective.

In fact,
(

1 0 −1
1 0 0
−1 1 1

)
is the inverse matrix of the standard matrix of T , so T is invertible, which

implies T is both injective and surjective.

2. (5 points)

(a) Compute the inverse A−1 for A =
(

1 1 1
1 2 3
1 4 8

)
.

(b) Solve AX =
(

1 0 1
1 1 2
1 3 5

)
for the 3× 3 matrix X.

We compute the inverse by using [A | I3] ∼ [I3 | A−1].1 1 1 1 0 0
1 2 3 0 1 0
1 4 8 0 0 1

 ∼
1 1 1 1 0 0

0 1 2 −1 1 0
0 3 7 −1 0 1


∼

1 1 1 1 0 0
0 1 2 −1 1 0
0 0 1 2 −3 1


∼

1 1 0 −1 3 −1
0 1 0 −5 7 −2
0 0 1 2 −3 1


∼

1 0 0 4 −4 1
0 1 0 −5 7 −2
0 0 1 2 −3 1


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So we now know A−1 =
(

4 −4 1
−5 7 −2
2 −3 1

)
. (Multiplying A−1A we can check that it is indeed I3.)

To solve the equation, we left multiply each side by A−1 since A−1AX = X to get

X =

 4 −4 1
−5 7 −2
2 −3 1

1 0 1
1 1 2
1 3 5


=

1 −1 1
0 1 −1
0 0 1


Alternatively, one could solve this by noting AX = [A~x1 A~x2 A~x3]. and then trying to find

the columns one at a time. For instance, A~x1 =
(

1
1
1

)
is easily solved with ~x1 = ~e1, since the

first column of A is
(

1
1
1

)
.

(For fun) For an n ×m matrix A and an m × n matrix B, show that if the columns of A do not
span Rn, then neither do the columns of AB. (But, if the the columns of B span Rm, then the
span of the columns of A equals the span of the columns of AB.)

Let’s prove this by the contrapositive. We will show that if the columns of AB do span Rn,
then so do the columns of A. Let ~b ∈ Rn be an arbitrary vector, and then we will show that
A~x = ~b has a solution (which would imply that the columns of A span Rn). Since the columns
of AB span Rn, let ~v be a solution to AB~v = ~b. Then ~x = B~v is a solution to A~x = ~b.
(So, if the columns of A don’t span Rn, neither do the columns of AB.)
Using more recent notation, ColAB ⊂ ColA. This means if ColA 6= Rn, then ColAB 6= Rn

either.
If the columns of B span Rm, then suppose ~b is a vector where A~x = ~b has a solution. Then,
B~v = ~x has a solution as well, which means AB~v = ~b. Since we showed every vector in ColA
is a vector in ColAB, then if the columns of B span Rm, then ColAB = ColA.

(For fun) If A is n× n with ATA = In, how can you solve A~x = ~b without computing A−1?

By left-multiplying both sides by AT , since then ATA~x = ~x, which means ~b = AT~b. In other
words, since A is square and ATA = In, AT just is A−1.
Note that if A is not square and ATA = I, then we would again get ~x = AT~b, but beware: this
is only saying that if A~x = ~b had a solution, then it must be AT~b. The system might not have
any solution at all!


