Quiz 13

1. (5 points) Let $A = \begin{pmatrix} 8 & -9 \\ 6 & -7 \end{pmatrix}$. (a) Give the general solution for $\vec{x}'(t) = A\vec{x}(t)$. (b) Solve the initial value problem for $\vec{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

2. (5 points) The heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions u(0,t) = u(1,t) = 0 and u(x,0) = f(x) for 0 < x < 1 has the solution $u(x,t) = \sum_{n=1}^{\infty} c_n e^{-(n\pi)^2 t} \sin(n\pi x)$ for c_n 's satisfying $f(x) = \sum_{n=1}^{\infty} c_n \sin(n\pi x)$. Give the solution for when $f(x) = 2\sin(\pi x) - 5\sin(3\pi x) + 8\sin(7\pi x)$.

(For fun) Old console games frequently used square waves for their soundtracks. For instance, let f(x) be a periodic function with period 2π which we define on $[-\pi,\pi]$: let f(x) = -1 if $-\pi < x < 0$ and f(x) = 1 if $0 < x < \pi$. Use the integral inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$ to write f(x) as a linear combination $f(x) = \sum_{n=1}^{\infty} c_n \sin(nx)$. (This is a Fourier series. For sound, each term is called a harmonic.)