
MATH 54. November 21, 2016. (Due Nov. 28, 10 points) Solutions

Quiz 12

1. (5 points) Consider the differential equation y′′ + y = sin t. (a) Find the general solution.
(b) Solve the boundary value problem y(0) = 0, y(π) = 0.

(a) The left-hand side has the auxiliary polynomial r2 + 1, which has roots ±i, and the right-
hand side corresponds to the roots ±i, so it is virtually a double root for the purpose of the
method of undetermined coefficients. The form of a particular solution is yp = a1t cos t +
a2t sin t. The derivatives are

y′p = a1 cos t− a1t sin t+ a2 sin t+ a2t cos t

y′′p = −a1 sin t− a1 sin t− a1t cos t+ a2 cos t+ a2 cos t− a2t sin t

Substituting these into y′′ + y, we get

y′′p + yp = −2a1 sin t+ 2a2 cos t

For this to equal sin t, a1 = −1
2 and a2 = 0, so yp = −1

2 t cos t. The general solution is thus
y(t) = c1 cos t+ c2 sin t− 1

2 t cos t.
(b) The boundary value problem has

0 = y(0) = c1 + 0− 0

0 = y(π) = −c1 + 0 +
1

2
π

but these equations cannot be simultaneously satisfied, thus the boundary value problem is
unsatisfiable. (Note: it was intended for the problem to read y(π/2) = 0 instead of y(π) = 0,
which you may want to try, but having an unsatisfiable boundary value problem is an OK
situation.)

2. (5 points) Verify that {cos2 x, sin2 x, sinx cosx} is a fundamental solution set for y′′′ + 4y′ = 0.

First of all, we check that they are indeed solutions. While we may substitute them into the
differential equation, that is a lot of work. Instead we may recall some trigonometric identities:

cos2 x =
1

2
+

1

2
cos(2x)

sin2 x =
1

2
− 1

2
cos(2x)

sinx cosx =
1

2
sin(2x)

These are linear combinations of 1, cos(2x), and sin(2x), and together correspond to the roots
0,±2i. An auxiliary polynomial with these three roots is (r − 0)(r − 2i)(r + 2i) = r3 + 4r, so
a differential equations they are a solution to is y′′′ + 4y = 0.
Next, we demonstrate that they are linearly independent. Consider the linear transformation
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T (f) =

 f(0)
f(π/4)
f(π/2)

. Then,

T (cos2 x) =

 1
1/2
0


T (sin2 x) =

 0
1/2
1


T (sinx cosx) =

 0
1/2
0


These three images are linearly independent (three pivots after a quick calculation), so cos2 x,
sin2 x, and sinx cosx are linearly independent.
Or, in the basis B = {1, cos(2x), sin(2x)}, we have

[cos2 x]B =

1/2
1/2
0


[sin2 x]B =

 1/2
−1/2

0


[sinx cosx]B =

 0
0

1/2


using the trigonometric identities, and these three coordinate vectors are linearly independent
(three pivots, or the 3× 3 matrix’s determinant is nonzero).
Or, we may calculate the Wronskian W [cos2 x, sin2 x, sinx cosx](t) and show that it is nonzero
for some t, but that is quite a lot of calculation.

(For fun) For the mass-spring system governed by y′′+2ay′+y = sin(ωt), a > 0, find the amplitude
of the oscillation for varying ω > 0. How does this differ from the undampened a = 0 case?

(It should say 0 < a < 1.) The auxiliary polynomial is r2 + 2ar + 1, which has roots −a ±
i
√

1− a2. The sin(ωt) corresponds to the roots ±ωi, which is never −a±i
√

1− a2 since the real
part −a is never zero. Thus, yp = d1 cos(ωt) + d2 sin(ωt). Substituting this into the equation,

y′′p + 2ay′p + yp =(−d1ω2 cos(ωt)− d2ω2 sin(ωt))

+ 2a(−d1ω sin(ωt) + d2ω cos(ωt))

+ (d1 cos(ωt) + d2 sin(ωt))
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which, for it to equal sin(ωt), gives the following system:

0 = −d1ω2 + 2ad2ω + d1 = (1− ω2)d1 + 2aωd2

1 = −d2ω2 − 2ad1ω + d2 = −2aωd1 + (1− ω2)d2

We then get d1 = −2aω/((1− ω2)2 + 4a2ω2) and d2 = (1− ω2)/((1− ω2)2 + 4a2ω2).
The amplitude of the particular solution is

√
d21 + d22 = 1/

√
(1− ω2)2 + 4aω2 = 1/

√
1 + 2(2a− 1)ω2 + ω4.

To graph this, let us find the local extrema. These occur when the derivative d
dω (1 + 2(2a −

1)ω2+ω4) is 0, which is when 4(2a−1)ω+4ω3 = 0, which is either when ω = 0 or 2a−1+ω2 = 0,
which is when ω = ±

√
1− 2a. If a > 1

2 , this never happens, but if a < 1
2 , then it does.

Notice that when a→ 0, then this critical point
√

1− 2a approaches 1. When a = 0, we have
seen how resonance occurs and the double root makes unbounded oscillation with ω = 1, but
with dampening, the oscilation is bounded. We can substitute in

√
1− 2a into the amplitude

expression to see the maximum amplitude:

1/
√

1 + 2(2a− 1)ω2 + ω4 = 1/
√

1 + 2(2a− 1)(1− 2a) + (1− 2a)2

= 1/
√

1− 2(1− 2a)2 + (1− 2a)2

= 1/
√

1− (1− 2a)2

= 1/
√

4a(1− a)

which, as a→ 0 goes to ∞, and at a = 1
2 is 1.

Interestingly, for 0 < a < 1
2 , 1/

√
4a(1− a) > 1, which means the system is an amplifier.


