Quiz 10

1. (5 points) Let W be the span of $\begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}$) and $\begin{pmatrix} 5 \\ 6 \\ -7 \end{pmatrix}$). Produce an orthogonal basis for W .

We just need to remove from the second vector the parallel component, according to the Gram-Schmidt process.

$$
\frac{(0,4,2)\cdot (5,6,-7)}{(0,4,2)\cdot (0,4,2)}(0,4,2) = \frac{10}{20}(0,4,2) = (0,2,1)
$$

Then, $(5, 6, -7) - (0, 2, 1) = (5, 4, -8)$ is orthogonal to the first vector. We then have the following orthogonal basis for W :

$$
\left\{ \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \\ -8 \end{pmatrix} \right\}
$$

2. (5 points) Let V be the span of $\binom{2}{1}$. Write $T(\vec{x}) = \text{proj}_V \vec{x}$ as a matrix transformation.

The matrix is simply $(T(\vec{e}_1)$ $T(\vec{e}_2))$, which we may compute directly. Alternatively, we may use the projection formula $\text{proj}_V \vec{x} = U U^T \vec{x}$ where U is an orthonormal basis for V. V is one-dimensional, and an orthonormal basis for it is $\begin{cases} \frac{1}{\sqrt{2}} \end{cases}$ 5 $\sqrt{2}$ $\binom{2}{1}$, so we compute

$$
UU^{T} = \left(\frac{1}{\sqrt{5}}\begin{pmatrix} 2\\1 \end{pmatrix}\right)\left(\frac{1}{\sqrt{5}}\begin{pmatrix} 2 & 1 \end{pmatrix}\right) = \frac{1}{5}\begin{pmatrix} 4 & 2\\2 & 1 \end{pmatrix}
$$

thus

$$
T(\vec{x}) = \begin{pmatrix} 4/5 & 2/5 \\ 2/5 & 1/5 \end{pmatrix} \vec{x}.
$$

We check that $T(2, 1) = (2, 1)$.

(For fun) Consider the transformation $T: V \to V$ defined by $T(f) = f''$, where V is the set of functions whose second derivatives are continuous. What are the eigenvectors of T ?

An eigenvector is a nonzero function f where $T(f) = \lambda f$ for some λ . That is, $f'' - \lambda f = 0$. An eigenvector is a nonzero function f where $I(j) = \lambda$
The auxiliary polynomial is $r^2 - \lambda$, which has roots $\pm \sqrt{ }$ λ . If $\lambda > 0$, then the corresponding eigenspace is two-dimensional, spanned by $e^{\sqrt{\lambda t}}$ and $e^{-\sqrt{\lambda t}}$. If $\lambda = 0$, then the double root means the eigenvectors are 1 and t. If $\lambda < 0$, then the roots are purely imaginary, with eigenvectors $\cos(\sqrt{-\lambda}t)$ and $\sin(\sqrt{-\lambda}t)$.
If $\lambda < 0$, then the roots are purely imaginary, with eigenvectors $\cos(\sqrt{-\lambda}t)$ and $\sin(\sqrt{-\lambda}t)$.