
Midterm 2 schemata - These are some of the ingredients for questions on a midterm.
(Elements from Midterm 1 still apply.)

• Determine whether a matrix is invertible, in whatever form that might take (compile a com-
plete Invertible Matrix Theorem).

• Use determinant rules, for instance to show det(PBP−1) = det(B).

• Use Cramer’s rule to find a single entry xi of a solution to A~x = ~b, or a single entry of A−1.

• Given a set, tell whether or not it is a subspace (check the three properties). Know examples
of vector spaces: Rn, Pn, Rm×n, {f : R→ R : f continuous}.
• Recognize a set as NulA, ColA, kerT , or imT ; use this to conclude the set is a subspace (to

skip needing to check the three properties). Finding bases of NulA, ColA, RowA, kerT , or
imT .

• Show whether a transformation T : V → W is a linear transformation. (Check the two
properties.)

• Relationship between injective/one-to-one and NulA or kerT . Relationship between surjec-
tive/onto and ColA, imT . Relationship between dimensions of NulA and ColA, or of kerT
and imT .

• Check whether a set is a basis. Find the dimension of a subspace. That the dimension of a
subspace W of V cannot exceed the dimension of V .

• Take a spanning set and make a basis (spanning set theorem). Take an independent set and
make a basis (add vectors from, say, the standard basis to the end to make it a spanning set,
then use the spanning set theorem).

• Given a vector of V and a basis B, find the coordinate relative to B. Given a coordinate
vector, find the corresponding vector of V .

• Given two bases B and C, find the basis change matrix from B-coordinates to C-coordinates.

• That the coordinate mapping ~x 7→ [~x]B is an isomorphism.

• Given a matrix A in B-coordinates of a transformation T and a basis change matrix P from
B-coordinates to C-coordinates, that PAP−1 is the matrix of T in C-coordinates.

• The matrix of a transformation relative to a pair of bases for the domain and codomain.

• Check whether a vector is an eigenvector, and recover its eigenvalue. That ~0 is never ever an
eigenvector.

• Calculate the eigenvalues of a matrix using the characteristic polynomial.

• That A− λI is not invertible exactly when λ is an eigenvalue.

• Determining whether a matrix is diagonalizable, either by finding a basis of eigenvalues or
noticing the matrix has distinct eigenvalues, whichever works. Diagonalizing a matrix (that
is, giving P and D for A = PDP−1). Understanding that the columns of P are a basis of
eigenvectors.

• Using the correspondence between A being invertible and A not having 0 as an eigenvalue.

• Finding the eigenvalues of A−1, AT , or (AT )−1 from the eigenvalues of A.

• Computing An from a diagonalization of A. Or computing An~v from a diagonalization of A.
Or, simpler, when ~v is a known eigenvector of A.
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• Finding the eigenvalues of a linear transformation T : V → V by first taking any basis of V ,
and then finding the eigenvalues of the matrix of T relative to the basis.

• Using the dot product properties (Theorem 1, 6.1). Length, normal vectors. Pythagorean
theorem or, possibly, the triangle inequality.

• Compute the basis of the orthogonal complement of a subspace. (ColA)⊥ = NulAT .

• Orthogonal sets of nonzero vectors are linearly independent. Orthogonal basis. Orthonormal
basis. Finding the coordinates of a vector relative to an orthonormal/orthogonal basis.

• Use the fact UT is the inverse matrix of a square orthogonal matrix U . Use the fact that for
any orthogonal matrix U , (U~x) · (U~y) = ~x · ~y.

• Computing the projection of a vector onto a subspace.
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