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Unlike usual, I’m giving some solutions to provide a sort of model for writing solutions. However, they
can still be written better! (I’m on a time budget.)

1. For each of the following sets, determine whether it (1) has the zero vector (2) is closed under addition
and (2) is closed under scalar multiplication.

(a) The set of odd integers (i.e., {n ∈ Z : n = 2k + 1 for some k ∈ Z}). This is a subset of the vector
space R, and it is missing 0. The sum of any two odd integers is even, for instance 1 + 1 = 2, and
twice any odd integer is even, for instance 2 · 1 = 2.

(b) The set of even integers (i.e., {n ∈ Z : n = 2k for some k ∈ Z}). It has 0. n1 + n2 = 2k1 + 2k2 =
2(k1+k2), so the sum of even integers is even. It is not closed under scalar multiplication: 1

2 ·2 = 1
is not even.

(c) {A ∈ R2×2 : detA = 1}. The zero vector of R2×2 is the two-by-two zero matrix, whose determinant
is 0, so the set is missing the zero vector. Since det I2 = 1, the identity matrix is in the set, but
det(I2+I2) = 4 and det(2I2) = 4, so it is not closed under either addition or scalar multiplication.

(d) {A ∈ R2×2 : a21 = 0}. These, by the way, are upper triangular 2 × 2 matrices. The zero matrix
has the (2, 1)-entry equal to 0, so the set contains the zero vector. Suppose A,B are both in the
set. Then the (2, 1) entry of A+B is a21 + b21 = 0 + 0 = 0, so it is closed under addition. Finally,
cA has entry (2, 1) being ca21 = c0 = 0, so it is closed under scalar multiplication. (Alternatively:
this set is the kernel of the transformation T (A) = a21, so it is a subspace.)

(e) {A ∈ R2×2 : all entries of A are negative}. It is missing the zero matrix since 0 is not negative.
Adding two matrices with negative entries results such a matrix, since negative plus negative is
negative. Scaling such a matrix by −1 results in a matrix whose entries are all positive.

(f) For B ∈ R3×2 some unknown matrix, {A ∈ R2×2 : BA = 0}, where 0 represents the zero matrix.
The zero matrix has B0 = 0, so 0 is such a matrix. Given A1 and A2 with BA1 = 0 and
BA2 = 0, then B(A1 + A2) = BA1 + BA2 = 0 + 0 = 0, so A1 + A2 is also in the set. Similarly,
B(cA) = cBA = c0 = 0, so it is also closed under scalar multiplication. (By the way, all that
needs to be true of A is that its columns lie in NulB. In a more abstract linear algebra course, we
would say that the set is the subspace isomorphic to Nul(A)⊕Nul(A).) (Alternatively, this is the
kernel of the transformation T (A) = BA, which you’d need to check is a linear transformation.)

(g) {A ∈ R2×2 : A4 = 0}. The fourth power of the zero matrix is zero, so the set has the zero vector.

It is not closed under addition: it contains both

(
0 1
0 0

)
and

(
0 0
1 0

)
, whose sum is

(
0 1
1 0

)
,

but the fourth power of this matrix is I2, not zero. It is closed under scalar multiplication since
(cA)4 = c4A4 = c40 = 0.

(h) {p(x) ∈ P2 : p(3) = 0} (that is, at-most-second-degree polynomials which have 3 as a root). The
zero polynomial has 3 as a root. If p, q are in the set, then (p + q)(3) = p(3) + q(3) = 0 + 0 = 0.
Similarly, (cp)(3) = cp(3) = c0 = 0. (Alternatively, this is the kernel of the evaluation map
T (p(x)) = p(3), which you’d need to check is a linear transformation.) (Alternatively alternatively,
having a root means the polynomial is divisible by (x− 3), so the set is of all p(x) which can be
written as q(x)(x− 3), which is the image of T (q(x)) = q(x)(x− 3), a linear transformation.)
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(i) {p(x) ∈ P2 : p(3) = 1}. This is missing the zero polynomial since at 3 the zero polynomial is 0,
not 1. It is not closed under addition: for any p, q in the set, (p+ q)(3) = p(3) + q(3) = 1 + 1 = 2.
It is not closed under scalar multiplication: (cp)(3) = cp(3) = c, so if c 6= 1 it leaves the set.

(j) {f(x) continuous : f(3) = 0} similar to (h).

(k) {f(x) continuous : f(3) = 1} similar to (i).

(l) {f(x) differentiable : f ′(3) = 0}. The zero function has 0 as its derivative, so it’s in the set. Given
f, g in the set (f + g)′(3) = f ′(3) + g′(3) = 0 + 0 = 0, and (cf)′(3) = cf ′(3) = c0 = 0. (This is
using linearity of the transformation d

dx .) (This is the kernel of the linear transformation d
dx

∣∣
x=3

.)

(m) {f(x) differentiable : f ′(x) = 0 for all x}. This is similar to (l). Another way is to notice that
f ′(x) = 0 means f(x) = c for some constant c (by the mean value theorem), so the set is actually
the set of constant functions — it is isomorphic to R.

(n) {f(x) : f(x) = f(−x)}. For f(x) = 0 (the zero function), f(−x) = 0 = f(x), so it is in it. For
f, g in the set, (f + g)(−x) = f(−x) + g(−x) = f(x) + g(x) = (f + g)(x), so f + g is in it. Also,
(cf)(−x) = cf(−x) = cf(x) = (cf)(x). (This is the kernel of T (f(x)) = f(x)− f(−x).)

(o) {f(x) : f(x) = −f(−x)}. For f the zero function, f(−x) = 0 = −0 = −f(x). For f, g in
the set, (f + g)(−x) = f(−x) + g(−x) = −f(x) − g(x) = −(f(x) + g(x)) = −(f + g)(x).
Also, (cf)(−x) = cf(−x) = −cf(x) = −(cf)(x). (This is either the image of the previous
transformation or the kernel of S(f(x)) = f(x) + f(x).)

(p) {f(x) : for R the radius of convergence of f at 0, R > 0}. The zero function has a radius of con-
vergence of ∞, so the zero function is in it. If f, g in the set with Rf and Rg the respective radii
of convergence, a Math 1B fact is the radius of convergence Rf+g of f +g is at least the smaller of
Rf and Rg. Also, scaling a function does not change its radius of convergence (unless it is scaling
by 0, in which case the radius becomes ∞).
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