Discussion comments

Kyle Miller

October 3, 2016

Unlike usual, I'm giving some solutions to provide a sort of model for writing solutions. However, they can still be written better! (I'm on a time budget.)

- 1. For each of the following sets, determine whether it (1) has the zero vector (2) is closed under addition and (2) is closed under scalar multiplication.
	- (a) The set of odd integers (i.e., $\{n \in \mathbb{Z} : n = 2k + 1 \text{ for some } k \in \mathbb{Z}\}\)$. This is a subset of the vector space \mathbb{R} , and it is missing 0. The sum of any two odd integers is even, for instance $1+1=2$, and twice any odd integer is even, for instance $2 \cdot 1 = 2$.
	- (b) The set of even integers (i.e., $\{n \in \mathbb{Z} : n = 2k \text{ for some } k \in \mathbb{Z}\}\)$. It has 0. $n_1 + n_2 = 2k_1 + 2k_2 =$ $2(k_1+k_2)$, so the sum of even integers is even. It is not closed under scalar multiplication: $\frac{1}{2} \cdot 2 = 1$ is not even.
	- (c) $\{A \in \mathbb{R}^{2 \times 2} : \det A = 1\}$. The zero vector of $\mathbb{R}^{2 \times 2}$ is the two-by-two zero matrix, whose determinant is 0, so the set is missing the zero vector. Since det $I_2 = 1$, the identity matrix is in the set, but $\det(I_2+I_2) = 4$ and $\det(2I_2) = 4$, so it is not closed under either addition or scalar multiplication.
	- (d) $\{A \in \mathbb{R}^{2 \times 2} : a_{21} = 0\}$. These, by the way, are upper triangular 2×2 matrices. The zero matrix has the $(2, 1)$ -entry equal to 0, so the set contains the zero vector. Suppose A, B are both in the set. Then the $(2, 1)$ entry of $A + B$ is $a_{21} + b_{21} = 0 + 0 = 0$, so it is closed under addition. Finally, cA has entry $(2,1)$ being $ca_{21} = c0 = 0$, so it is closed under scalar multiplication. (Alternatively: this set is the kernel of the transformation $T(A) = a_{21}$, so it is a subspace.)
	- (e) $\{A \in \mathbb{R}^{2 \times 2} : \text{all entries of } A \text{ are negative}\}\$. It is missing the zero matrix since 0 is not negative. Adding two matrices with negative entries results such a matrix, since negative plus negative is negative. Scaling such a matrix by −1 results in a matrix whose entries are all positive.
	- (f) For $B \in \mathbb{R}^{3 \times 2}$ some unknown matrix, $\{A \in \mathbb{R}^{2 \times 2} : BA = 0\}$, where 0 represents the zero matrix. The zero matrix has $B0 = 0$, so 0 is such a matrix. Given A_1 and A_2 with $BA_1 = 0$ and $BA_2 = 0$, then $B(A_1 + A_2) = BA_1 + BA_2 = 0 + 0 = 0$, so $A_1 + A_2$ is also in the set. Similarly, $B(cA) = cBA = c0 = 0$, so it is also closed under scalar multiplication. (By the way, all that needs to be true of A is that its columns lie in Nul B. In a more abstract linear algebra course, we would say that the set is the subspace isomorphic to $\text{Nul}(A) \oplus \text{Nul}(A)$.) (Alternatively, this is the kernel of the transformation $T(A) = BA$, which you'd need to check is a linear transformation.)
	- (g) $\{A \in \mathbb{R}^{2 \times 2} : A^4 = 0\}$. The fourth power of the zero matrix is zero, so the set has the zero vector. It is not closed under addition: it contains both $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, whose sum is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, but the fourth power of this matrix is I_2 , not zero. It is closed under scalar multiplication since $(cA)^4 = c^4A^4 = c^40 = 0.$
	- (h) $\{p(x) \in \mathbb{P}_2 : p(3) = 0\}$ (that is, at-most-second-degree polynomials which have 3 as a root). The zero polynomial has 3 as a root. If p, q are in the set, then $(p + q)(3) = p(3) + q(3) = 0 + 0 = 0$. Similarly, $(cp)(3) = cp(3) = c0 = 0$. (Alternatively, this is the kernel of the evaluation map $T(p(x)) = p(3)$, which you'd need to check is a linear transformation.) (Alternatively alternatively, having a root means the polynomial is divisible by $(x - 3)$, so the set is of all $p(x)$ which can be written as $q(x)(x-3)$, which is the image of $T(q(x)) = q(x)(x-3)$, a linear transformation.)
- (i) $\{p(x) \in \mathbb{P}_2 : p(3) = 1\}$. This is missing the zero polynomial since at 3 the zero polynomial is 0, not 1. It is not closed under addition: for any p, q in the set, $(p+q)(3) = p(3) + q(3) = 1 + 1 = 2$. It is not closed under scalar multiplication: $(cp)(3) = cp(3) = c$, so if $c \neq 1$ it leaves the set.
- (i) $\{f(x)$ continuous : $f(3) = 0\}$ similar to (h).
- (k) $\{f(x)$ continuous : $f(3) = 1\}$ similar to (i).
- (1) $\{f(x)$ differentiable : $f'(3) = 0\}$. The zero function has 0 as its derivative, so it's in the set. Given f, g in the set $(f+g)'(3) = f'(3) + g'(3) = 0 + 0 = 0$, and $(cf)'(3) = cf'(3) = c0 = 0$. (This is using linearity of the transformation $\frac{d}{dx}$.) (This is the kernel of the linear transformation $\frac{d}{dx}|_{x=3}$.)
- (m) $\{f(x)$ differentiable : $f'(x) = 0$ for all $x\}$. This is similar to (l). Another way is to notice that $f'(x) = 0$ means $f(x) = c$ for some constant c (by the mean value theorem), so the set is actually the set of constant functions — it is isomorphic to R.
- (n) ${f(x): f(x) = f(-x)}$. For $f(x) = 0$ (the zero function), $f(-x) = 0 = f(x)$, so it is in it. For f, g in the set, $(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)$, so $f+g$ is in it. Also, $(cf)(-x) = cf(-x) = cf(x) = (cf)(x)$. (This is the kernel of $T(f(x)) = f(x) - f(-x)$.)
- (o) ${f(x) : f(x) = -f(-x)}$. For f the zero function, $f(-x) = 0 = -0 = -f(x)$. For f, g in the set, $(f + g)(-x) = f(-x) + g(-x) = -f(x) - g(x) = -(f(x) + g(x)) = -(f + g)(x)$. Also, $(cf)(-x) = cf(-x) = -cf(x) = -(cf)(x)$. (This is either the image of the previous transformation or the kernel of $S(f(x)) = f(x) + f(x)$.
- (p) $\{f(x):$ for R the radius of convergence of f at 0, $R > 0$. The zero function has a radius of convergence of ∞ , so the zero function is in it. If f, g in the set with R_f and R_g the respective radii of convergence, a Math 1B fact is the radius of convergence R_{f+g} of $f+g$ is at least the smaller of R_f and R_g . Also, scaling a function does not change its radius of convergence (unless it is scaling by 0, in which case the radius becomes ∞).