
Determinants in detail

Kyle Miller

September 27, 2016

The book’s introduction to the determinant detA of an n×n square matrix A is to say there is a quantity
which determines exactly when A is invertible, followed by a “definition” of cofactor expansion along the first
row. The book follows this up with the claim that cofactor expansion along any row or column is equal, since
it would avoid a “lengthy digression.” These definitions are opaque, not giving any insight, and it is possible
the authors decided that these might as well be the definition since cofactor expansion is a reasonable way
to calculate determinants by hand for small matrices. Let us try to do better!

While it is true that the digression is somewhat lengthy, many things in chapters 3.1 and 3.2 are a part
of it anyway, so the claim is somewhat indistinguishable from the authors giving up explaining the theory
simply.

I cannot promise that I will succeed, but I hope to show as clearly as I can that the determinant, and by
extension the cofactor expansion, is the consequence of three reasonable properties.

1 Multilinear transformations

We have seen linear transformations already, which are functions T : Rn → Rm with two properties: T (~u+
~v) = T (~u) + T (~v) and T (c~u) = cT (~u) for all ~u,~v ∈ Rn and c ∈ R.

A multilinear transformation is a function (Rn)k → Rm which takes k vectors of Rn to produce a vector
of Rm, and which is linear in each input. That is:

1. T (. . . , ~u+ ~v, . . . ) = T (. . . , ~u, . . . ) + T (. . . , ~v, . . . )

2. T (. . . , c~u, . . . ) = cT (. . . , ~u, . . . )

where everything in the . . . remains the same in each equality.
For example, a multilinear transformation which takes two vectors has the following rule:

T (~u1 + ~v1, ~u2 + ~v2) = T (~u1, ~u2 + ~v2) + T (~u2, ~u2 + ~v2)

= T (~u1, ~u2) + T (~u1, ~v2) + T (~u2, ~u2) + T (~u2, ~v2)

This is sort of like saying that multilinear transformations are a multiplication rule for vectors (it expands
like (u1 + u2)(v1 + v2) would for numbers). Beware that T (~u1 + ~v1, ~u2 + ~v2) isn’t necessarily equal to
T (~u1, ~u2) + T (~v1, ~v2)!

A concrete example of a multilinear transformation is the dot product ~u · ~v = u1v1 + u2v2 + · · ·+ unvn,
which is (Rn)2 → R (and will be introduced later in the course). Another concrete example is the cross
product ~u× ~v which is (R3)2 → R (and will not be).

It is possible to show that the function which takes a pair of vectors in R2 and gives the area of the
parallelogram between them is a multilinear transformation, but we won’t do this here. For this to work out,
swapping the vectors must give negative the area. This is because T (~x, ~x) = 0 for any ~x (this is a degenerate
parallelogram), and

0 = T (~u+ ~v, ~u+ ~v)

= T (~u, ~u) + T (~u,~v) + T (~v, ~u) + T (~v,~v)

= T (~u,~v) + T (~v, ~u)

1



so T (~u,~v) = −T (~v, ~u).
One thing you can do with a multilinear transformation is move scalars wherever you want For instance:

T (c~u,~v) = cT (~u,~v) = T (~u, c~v)

Beware that cT (~u,~v) is not necessarily equal to T (c~u, c~v).
Another thing you can do with a multilinear transformations is come up with something like a matrix of

the transformation, but matrices won’t do anymore: it takes a tensor. (A matrix is a kind of tensor.) It ends
up being fairly similar. Put in all possible sets of standard basis vectors to get a “column.” As an example,
for T : (Rn)2 → Rm, “column” ~aij is a vector of Rm, where ~aij = T (~ei, ~ej). Then, T (~u,~v) =

∑
i,j uivj~aij

by multilinearity. The tensor is sort of like a matrix, but a rectangular prism of numbers rather than a
rectangle. For sake of justifying this equation:

T (~u,~v) = T (
∑
i

ui~ei,
∑
j

vj~ej)

=
∑
i

uiT (~ei,
∑
j

vj~ej)

=
∑
i

∑
j

uivjT (~ei, ~ej)

=
∑
i,j

uivj~aij

2 Characterization of determinants

A determinant for Rn is a function det : (Rn)n → R which takes n vectors of Rn and produces a real number
with the following properties:

1. det is multilinear.

2. det(~e1, . . . , ~en) = 1. (That is, det In = 1.)

3. det(. . . , ~u, . . . , ~v, . . . ) = −det(. . . , ~v, . . . , ~u, . . . ). (That is, det is antisymmetric.)

What we will show is that these three properties characterize the determinant: anything which has these
three properties is the determinant. We will start this by showing that these three properties are sufficient
to compute the determinant of a matrix.

Using the standard basis of Rn, we can do the following expansion (whose notation is hard to make nice,
sorry!):

detA = det
(
~a1 ~a2 · · · ~an

)
= det

(∑
i1
ai11~ei1

∑
i2
ai22~ei2 . . .

∑
in
ainn~ein

)
=
∑
i1

∑
i2

· · ·
∑
in

ai11ai22 · · · ainn det
(
~ei1 ~ei2 . . . ~ein

)
So, the determinant so far is some expression involving a product of entries of A from different columns,
multiplied by some determinant of a matrix whose columns are some standard basis vectors. Antisymmetry
implies that whenever two columns are the same, the determinant is zero. This is because swapping those
two columns leaves the matrix unchanged, and yet the determinant becomes negative of itself. The only
solution to x = −x is x = 0.

Thus, every time any pair of indices ij and ik are equal, then that determinant is zero. That means
(i1, i2, . . . , in) is some permutation of (1, 2, . . . , n). The set Sn is the set of all permutations of (1, 2, . . . , n),
so we can rewrite the determinant expression as

detA =
∑
i∈Sn

ai11ai22 · · · ainn det
(
~ei1 ~ei2 . . . ~ein

)

2



This means each matrix appearing in the sum has the property that each column is a distinct standard
basis vector: that is, the matrix is the result of permuting the columns of the identity matrix. The property
of antisymmetry says that these determinants are either 1 or −1 since we assume det In = 1. A common
notation is to write (−1)i for this determinant, which is called the sign of the permutation. Therefore, we
have the equation

detA =
∑
i∈Sn

(−1)iai11ai22 · · · ainn (1)

One thing we should check is that (−1)i is actually meaningful. Given a permutation (i1, . . . , in) in Sn,
we may obtain (1, 2, . . . , n) by the following process: look for 1 and swap it with location 1, look for 2 and
swap it with location 2, and so on. If the number of swaps was even, then (−1)i = 1, and if the number of
swaps was odd, then (−1)i = −1. We don’t count swaps which don’t move anything.

Let us test out this formula to come up with 2 × 2 and 3 × 3 determinant formulas. For 2 × 2, there
are two permutations of (1, 2), namely (1, 2) and (2, 1). (−1)(1,2) = (−1)0 = 1, and (−1)(2,1) = (−1)1 = −1
since it takes one swap to sort (2, 1). Then,

det

(
a11 12

a21 a22

)
= (−1)(1,2)a11a22 + (−1)(2,1)a21a12

= a11a22 − a21a12,

just as the book claims. For 3× 3, there are six permutations of (1, 2, 3). Let us calculate the signs of each
of these permutations ahead of time.

(−1)(1,2,3) = 1

(−1)(1,3,2) = −(−1)(1,2,3) = −1

(−1)(2,1,3) = −(−1)(1,2,3) = −1

(−1)(2,3,1) = −(−1)(1,3,2) = 1

(−1)(3,1,2) = −(−1)(1,3,2) = 1

(−1)(3,2,1) = −(−1)(1,2,3) = −1

Then,

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 − a11a32a23 − a21a12a33 + a21a32a13 + a31a12a23 − a31a22a13

(which is the formula mentioned on page 156 of the textbook). Try doing cofactor expansion of this matrix
to see it really does match the book.

We have almost shown that determinants exist. All that remains is to show that (−1)i is actually
actually meaningful. Why is it that if a permutation can be gotten to with an even number of swaps
it can’t be gotten to with an odd number of swaps, and vice versa? One reason I know is that there
is a strange function defined in the following way from Sn: let f(i) =

∏
j<k(xij − xik). For instance,

f(2, 1, 3) = (x2−x1)(x2−x3)(x1−x3) = −(x1−x2)(x1−x3)(x2−x3) = −f(1, 2, 3). With this, f(1, 2, . . . , n) =∏
j<k(xj − xk), and f(i) = ±f(1, . . . , n) for any i ∈ Sn, and we define (−1)i to be the number where

f(i) = (−1)if(1, . . . , n). This matches our previous definition, because whenever we swap two entries of i
to get i′, then in f(i′) every term involving those two terms becomes negative of what it was, and every
term involving only one term swaps with a term involving the other, except for the single term involving
both, which becomes negative. Thus, there are an odd number of −1’s which can be factored out, and
f(i′) = −f(i). (I apologize for this reason; I’d need more time to make it better, but I doubt anyone will
get this far anyway. If you’re one who did read this, I’m happy to explain it to you.)

So: (−1)i is a well-defined expression, and since we derived the determinant from the properties, and
there was only one choice for everything, there is a determinant, whose formula is given in equation 1.

3



3 Determinants and row reduction

The multilinearity properties were all in terms of columns, but we may also speak of multilinearity of rows
for the reason that detAT = detA. This equation is because∑

i∈Sn

(−1)iai11ai22 · · · ainn =
∑
j∈Sn

(−1)ja1j1a2j2 · · · anjn

which isn’t immediately clear, but which is from seeing that a swap of columns corresponds to a swap of
rows, so we can translate (−1)i for a column permutation i into (−1)j for a row permutation j. That this
has anything to do with the transpose is from the rule (AT )ij = Aji.

Every elementary row operation in row reduction then has a clear effect on the determinant. For ease of
writing these things down, they will be given as column operations, but keep the detAT = detA formula in
mind. These are simply applications of multilinearity and antisymmetry:

• Scaling. det ( ~a1 ... c~ai ... ~an ) = cdet ( ~a1 ... ~ai ... ~an ).

• Swapping. det ( ~a1 ... ~ai ... ~aj ... ~an ) = −det ( ~a1 ... ~aj ... ~ai ... ~an ).

• Replacement. det ( ~a1 ... ~ai+c~aj ... ~an ) = det ( ~a1 ... ~ai ... ~an ) + cdet ( ~a1 ... ~aj ... ~an ) = det ( ~a1 ... ~ai ... ~an )
(since the second determinant in the sum had a matrix with column ~aj appearing twice).

Since an elementary matrix is the transformation for an elementary row operation, that is, the result of
applying the row operation to the identity matrix, we then have

• Scaling. det(scaling a row by c) = c.

• Swapping. det(swapping two rows) = −1.

• Replacement. det(adding c of a row to another row) = 1.

With these in mind, we can show the all-important det(AB) = det(A) det(B), which lets us go back and
forth between the complexity of matrix multiplication and the simplicity of real number multiplication.

If a matrix A is not invertible, then one column is a linear combination of the others, so by multilinearity
(and reasoning similar to that for replacement) detA = 0. Then, for any matrix B, since we know AB is
not invertible, we see det(AB) = det(A) det(B) when A is not invertible, since both sides are 0.

Otherwise, if A is invertible, we have some more work to do. Previously in the course we showed that
every invertible matrix is the product of some number of elementary matrices: A = E1E2 · · ·Ek. Then,
given detB, we can get det(EkB) by realizing EkB is the result of applying the row operation Ek to B, so
then det(EkB) = det(Ek) det(B) since all of the numbers happen to match up no matter which of the three
row operations Ek may happen to be. By repeatedly applying this reasoning, we get det(E1 · · ·EkB) =
det(E1) det(E2 · · ·EkB) and so on, until det(AB) = det(E1) det(E2) · · · det(Ek) det(B). By then reversing
this process, we can write det(E1 · · ·Ek) for det(E1) · · · det(Ek) since each matrix represents a row operation.
Thus, det(AB) = det(A) det(B) when A is invertible.

A nice side effect of this is that it suggests another way to compute determinants: row reduce a matrix
until all the pivots are 1. If there are not enough pivots, the determinant is 0 since the matrix is not
invertible. Otherwise, go back through which elementary row operations were performed and multiply the
reciprocals of their determinants together. Here is an example of one way of keeping track of this:

det

(
1 1
1 −1

)
= det

(
1 1
0 −2

)
= −2

(
1 1
0 1

)
= −2

(
1 0
0 1

)
= −2.

One calculation-accelerating fact is that an upper- (or lower-) triangular matrix has a determinant which
is a product of the diagonal entries. This is because the only permutation in Sn which does not involve
entries below (or above) the diagonal is (1, 2, . . . , n). This is the only one which matters, since every other
permutation involves a multiplication by one of those zero elements below (or above) the diagonal. Another
reason is that an upper triangular matrix can be row reduced to a diagonal matrix using only replacement.

4



4 Cofactor expansion

Now we will show that cofactor expansion is a way to compute the determinant. This requires some temporary
notation to maintain sanity. Let Aij for now denote a minor of matrix A, which is the (n − 1) × (n − 1)
matrix obtained by omitting row i and column j. We will show that expansion along the first row works:

Theorem 1 (Cofactor expansion along the first row). If A is 1× 1, then detA = a11. Otherwise,

detA =

n∑
j=1

(−1)j−1a1j detA1j

Proof. When A is 1× 1, then (1) is the only permutation in S1, so detA = a11.
Now suppose n > 1. The permutations in Sn can be split into n different classes, where class j is all

permutations i with ij = 1. For example, in S3, the second class consists of (2, 1, 3) and (3, 1, 2). We may
split the determinant sum according to class:

detA =

n∑
j=1

∑
i∈Sn
ij=1

(−1)iai11ai22 · · · ainn (2)

=

n∑
j=1

a1j
∑
i∈Sn
ij=1

(−1)iai11ai22 · · · âijj · · · ainn (3)

where the âijj represents omitting that term from the product. The terms in the inner sum do not contain
any entries of the first row of A, since they have been omitted by the condition ij = 1 and by factoring a1j
out of the expression. The permutation i′ = (1, i1, . . . , îj , . . . , in) is related to i itself by swapping ij with

the term before it repeatedly until it is at the beginning, so (−1)i
′

= (−1)j−1(−1)i. We may use this to see
that ∑

i∈Sn
ij=1

(−1)iai11ai22 · · · âijj · · · ainn = (−1)j−1
∑
i∈Sn
i1=1

(−1)iai21ai32 · · · aij(j−1)âij+1jaij+1(j+1) · · · ainn

= (−1)j−1 detA1j

The second expression is supposed to represent using entries 2 through n of a permutation after the swapping
the 1 to the front, which involves skipping over column j. This is hard to describe, but is easier if you
(personally) think about an example. The third expression comes from realizing that a permutation of
(2, 3, . . . , n) can be thought of as a permutation of Sn−1 by renumbering, and that the expression is the
determinant of the minor A1j , directly from equation 1. It will probably take many moments to believe this.

By substituting this back into the determinant expression in equation 3, detA =
∑n
j=1(−1)j−1a1j detA1j .

Theorem 2 (Cofactor expansion along a row). If A is n × n with n > 1, and if 1 ≤ k ≤ n, then cofactor
expansion along row k is

detA =

n∑
j=1

(−1)j+kakj detAkj .

Proof. By swapping row k repeatedly with the row before it, we may obtain a matrix A′ with row 1 being
k, and with detA = (−1)k−1 detA′ since there are k − 1 swaps between them. The relationship between
minors is that A′1j = Akj , and among entries a′1j = akj , so by cofactor expansion along the first row of A′,

detA = (−1)k−1
n∑
j=1

(−1)j−1akj detAkj =

n∑
j=1

(−1)k+j−2akj detAkj =

n∑
j=1

(−1)k+jakj detAkj .

Cofactor expansion along columns follows from detAT = detA.

5



5 A word about efficiency

We have two methods of calculating a determinant, cofactor expansion and row reduction. Both are terrible
to do by hand, but which is less terrible? One proxy for terribleness is the number of multiplications each
takes, which we will find upper bounds for given a matrix of size n× n.

For a 1× 1 matrix, cofactor expansion takes 0 multiplications. For n× n, there are n terms in the sum,
each which has one multiplication by each of the n determinants of size (n − 1) × (n − 1). If Tc(n) is the
number of multiplications, we thus have the recurrence relations Tc(1) = 0 and Tc(n) = n+ nTc(n− 1).

n Tc(n)

1 0
2 2
3 9
4 40
5 205
6 1236

Table 1: Worst-case number of multiplications for cofactor expansion

For row reduction, we have to think about the algorithm carefully. We don’t count swaps, and we do
not need to scale any rows throughout the algorithm since we may multiply down the diagonal at the very
end (n−1 multiplications there), and for every pivot row, we perform a replacement operation for every row
below it. Row i has n− i+ 1 nonzero entries and n− i rows below it, each with n− i+ 1 entries themselves.
Row i then takes (n − i)(n − i + 1) multiplications, which means Tr(n) = n − 1 +

∑n−1
i=1 (n − i)(n − i + 1)

counts the worst-case number of multiplications to row reduce and then multiply down the diagonal.

n Tr(n)

1 0
2 3
3 10
4 23
5 44
6 75

Table 2: Worst-case number of multiplications for row reduction

This suggests that it might be worth doing cofactor expansion for up to 3×3 matrices, and then considering
row reduction for anything larger. Even if we scale rows while reducing, 4× 4 takes 32 multiplications.

If a matrix has a lot of zeros, it might be worth cofactor expanding even if it is a large matrix, and it
also might be worth performing some row or column operations just before beginning cofactor expansion to
produce a lot of zeros.

If the point is to tell whether a matrix is invertible, it might be worth row reducing anyway because you
might want the inverse.

6 Determinant of a product, again

While we showed that det(AB) = det(A) det(B) using row reduction, can we show it directly from the
formula we derived for determinants? If so, this is a kind of calculation which is non-illuminating, but it can

6



be nice to know it is possible. Let C = AB, so then cij =
∑n
k=1 aikbkj .

det(AB) =
∑
σ∈Sn

(−1)σcσ11 · · · cσnn

=
∑
σ∈Sn

(−1)σ

(∑
k1

aσ1k1bk11

)
· · ·

(∑
kn

aσnknbknn

)
=
∑
k1

· · ·
∑
kn

∑
σ∈Sn

(−1)σaσ1k1bk11 · · · aσnknbknn

=
∑
k1

· · ·
∑
kn

∑
σ∈Sn

(−1)σaσ1k1 · · · aσnknbk11 · · · bknn

If two indices ki and kj are equal, then for a permutation σ, the aσki
ki and aσkj

kj components of a term are

swapped by a permutation σ′ which is σ except whose components ki and kj are swapped. Such σ and σ′

come in pairs with (−1)σ = −(−1)σ
′
, so the inner sum is zero in this case. This means (k1, . . . , kn) must be

a permutation for the inner sum to be nonzero, so

det(AB) =
∑
k∈Sn

∑
σ∈Sn

(−1)σaσ1k1 · · · aσnknbk11 · · · bknn

For each permutation k and permutation σ, there is a permutation τ where τi = σk−1
i

. Here, k−1 represents

the inverse permutation: whenever ki = j, then k−1j = i. This has the property that when kj = i then
σj = τi. Thus, having τk to mean the permutation with (τk)i = τki , we may rewrite the sum as

det(AB) =
∑
τ∈Sn

∑
k∈Sn

(−1)τkaτ11 · · · aτnnbk11 · · · bknn

One fact about permutations is that (−1)τk = (−1)τ (−1)k since τk can be sorted to be τ by using the swaps
to bring k to the (1, 2, . . . , n) permutation. With this in mind,

det(AB) =
∑

τ,k∈Sn

(−1)τ (−1)kaτ11 · · · aτnnbk11 · · · bknn

=

(∑
τ∈Sn

(−1)τaτ11 · · · aτnn

)(∑
k∈Sn

(−1)kbk11 · · · bknn

)
= det(A) det(B)

To give you the words behind this: Sn is called the symmetric group, and k 7→ (−1)k is the sign homomor-
phism. We used group properties of composition of permutations and inverse permutations.

7


