Math 1B: Calculus

Spring 2020

Discussion 21: Modeling With Differential Equations (9.1)

Instructor: Alexander Paulin

Date: Mar 30, 2020

- 1. Verify that the following differential equations have the given solutions, where y is a function of t.
 - (a) For y' = ay, the solutions $y = Ce^{at}$ for $C \in \mathbb{R}$. $y' = Cae^{at} = a(Ce^{at}) = ay$

(b) For
$$y'' + y = 0$$
, the solutions $y = C \sin(t)$ and $y = C \cos(t)$ for $C \in \mathbb{R}$.

$$\begin{aligned}
y' &= C \cos(t) \\
y'' &= -C \sin(t) \\
y'' &= -C \sin(t) \\
y'' &= -C \cos(t) \\
y'' &$$

(c) For
$$ty' = 1$$
, the solutions $y = \ln(t) + C$ for $C \in \mathbb{R}$.
 $y' = \frac{1}{t} + O$
 $ty' = t \cdot \frac{1}{t} = 1$

- 2. Determine the general solution to the given differential equation.¹
 - (a) y' = 0. $y = \int 0 dt = C$, so y = C for $C \in \mathbb{R}$

(b)
$$y'(t) = \sin(t)$$

 $\gamma = \int \sin(t) dt = -\cos(t) + C$
so $\gamma = -\cos(t) + C$

¹(*Hint: this is integration by another name.*)

(c)
$$y'(t) = t^2$$

 $y = \int t^2 dt = \frac{1}{3}t^3 + C$

(d)
$$y''(t) = -\frac{1}{t^2}$$

 $y' = \int -\frac{1}{t^2} dt = \frac{1}{t} + C$
 $y = \int (\frac{1}{t} + C) dt = \ln|t| + Ct + D$
so $y(t) = \ln|t| + Ct + D$ for $C, D \in \mathbb{R}$

3. Find the equilibrium solutions² to the following differential equations.

(a)
$$\frac{dy}{dt} = ay$$
 for $a \neq 0$. (What happens if $a = 0$?) $\gamma(t) = 0$ means $\gamma'(t) = 0$

 $\frac{O}{a} = \frac{ay}{a}$ O = Y so y(t) = O is only equilibrium solu.

(b)
$$\frac{dy}{dt} = 1 - y^2$$
.
 $0 = |-\gamma^2$
 $y^2 = |$
 $y = \pm |$
So $y(t) = |$ and $y(t) = -|$

(c)
$$\frac{dy}{dt} = 1 + y^2$$
.
 $0 = 1 + y^2$
 $-1 = y^2$ So no equilibrium solutions

(d)
$$\frac{dy}{dt} = ay(b-y)$$
 for $a \neq 0$.
 $0 = ay(b-y)$ So $y(t) = 0$ and $y(t) = b$ are equilibrium solves
 $0 = y(b-y)$
 $y=0$ or $b-y=0$
 $b=y$
(e) $\frac{dy}{dt} = \cos(y)$.
 $0 = \cos(y)$
 $y = \frac{\pi}{2} + \pi n$ for $n \in \mathbb{Z}$
for $n \in \mathbb{Z}$
 $y = \frac{\pi}{2} + \pi n$ (many equilibrium solutions !)

²An equilibrium solution is a constant-valued solution y(t) = c for some $c \in \mathbb{R}$.

4. An object of mass m hanging from an ideal spring with spring constant k obeys the second-order differential equation

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x,$$

where x(t) is the vertical displacement through time.

(a) Show that $x(t) = A\cos(t\sqrt{k/m}) + B\sin(t\sqrt{k/m})$ is a solution, where $A, B \in \mathbb{R}$.

$$\begin{aligned} x'(t) &= - \underbrace{\mathbb{K}}_{\mathbb{K}} A \sin(t \sqrt{\mathbb{K}}) + \int_{\mathbb{K}} B \cos(t \sqrt{\mathbb{K}}) \\ x''(t) &= - \underbrace{\mathbb{K}}_{\mathbb{K}} A \cos(t \sqrt{\mathbb{K}}) - \underbrace{\mathbb{K}}_{\mathbb{K}} B \sin(t \sqrt{\mathbb{K}}) \\ &= - \underbrace{\mathbb{K}}_{\mathbb{K}} (A \cos(t \sqrt{\mathbb{K}}) + B \sin(t \sqrt{\mathbb{K}})) \\ &= - \underbrace{\mathbb{K}}_{\mathbb{K}} X(t) \end{aligned}$$

(b) Solve the initial value problem where x(0) = 1 and x'(0) = 0, representing releasing the object from one unit of displacement at rest.

$$l = X(0) = A + 0$$
 so $A = 1 \text{ and } B = 0$
 $0 = X'(0) = 0 + \sqrt{k}B$
 $X(t) = \cos(t\sqrt{k})$

(c) Solve the initial value problem where x(0) = 0 and x'(0) = 1, representing giving the object a unit-sized kick at time zero.

$$0 = x(0) = 0 + B$$

$$1 = x'(0) = \sqrt{\underline{E}} A + 0$$

$$x(t) = \sqrt{\underline{E}} \sin(t \sqrt{\underline{E}})$$

5. Suppose g(t) is a function. Write the general solution y(t) for y'(t) = g(t) using a definite integral, given the initial condition y(0) = C.

$$Y(t) = \int_{0}^{t} g(s) ds + C$$

$$Check: Y'(t) = \frac{1}{2t} \int_{0}^{t} g(s) ds + O$$

$$= g(t)$$

6. Guess the general solution y(t) for $y^{(n)} = 0$. (Hint: What kinds of functions become zero after repeated differentiation?)

• Saw
$$y' = 0$$
 hos $y = c$ as soln.
• $y''=0$, $y'=\int 0 dt = c$, $y = \int c dt = ct+D$
• $y'''=0$, $y''=\int 0 dt = c$, $y'=\int c dt = ct+D$, $y = \int (ct+D) dt$
= $\frac{1}{2}ct^2 + Dt + E$
• Gauess: $y(t) = A_0 + A_1t + A_2t^2 + \dots + A_{m_1}t^{m_1}$
is general solu to $y^{(m)} = 0$.

7. Suppose y = f(t) and y = g(t) are two solutions to y'' + ay' + by = 0. Show that y = Af(t) + Bg(t) is also a solution, for all constants $A, B \in \mathbb{R}$.

$$y' = Af' + Bg''$$

$$y'' = Af'' + Bg'''$$

$$y'' + ay' + by = (Af'' + Bg'') + a (Af' + Bg') + b(Af + Bg)$$

$$= A(f'' + af' + bf) + B(g'' + ag' + bg)$$

$$= A \cdot O + B \cdot O$$

$$= O$$

8. An equilibrium solution y(t) = c for a first-order differential equation y'(t) = g(y) is called *stable* if there is an interval (a, b) containing c such that g(y) is positive for $y \in (a, c)$ and g(y) is negative for $y \in (c, b)$. Analyze the stability of equilibrium solutions in problem 3. Can you make intuitive sense of this terminology?

(a)
$$y' = ay$$
 $y = 0$ stuble if $a < 0$
(b) $y' = 1 - y^2$
(c) $y' = 1 + y^2$ (no equilib. solves)
(d) $y' = ay(b-y)$ if $a > 0$ and $b > 0$, $1 = 0$ stable
if $a < 0$ and $b < 0$, $y = 0$ stable
(e) $y' = cos(y)$
(f) $y' = tr(2n + \frac{1}{2})$ stable, $n \in \mathbb{Z}$
(c) $y' = cos(y)$