Integration by parts

These are solutions and discussion for selected problems.

2. (d) $\int x^n \sin(x) dx$ and (e) $\int x^n \cos(x) dx$ for integers $n = 0, 1, 2, \ldots$

Do integration by parts with

$$
f(x) = xn
$$

$$
f'(x) = nxn-1
$$

$$
g(x) = -\cos(x).
$$

Then,

$$
\int x^n \sin(x) dx = (x^n)(-\cos(x)) - \int (nx^{n-1})(-\cos(x)) dx
$$

= $-x^n \cos(x) + n \int x^{n-1} \cos(x) dx.$

So, the integral reduces to one of the form for part (e). Integration by parts for (e) gives

$$
\int x^n \cos(x) dx = x^n \sin(x) - n \int x^{n-1} \sin(x) dx.
$$

(Check these by taking the derivatives of both sides.)

These reduction rules are enough to compute these integrals for any particular integer value of $n \geq 0$.

One thing you can do with these is substitute the second rule into the first (with the appropriate modification of n :

$$
\int x^n \sin(x) dx = -x^n \cos(x) + n \left(x^{n-1} \sin(x) - (n-1) \int x^{n-2} \sin(x) dx \right)
$$

= $-x^n \cos(x) + nx^{n-1} \sin(x) - n(n-1) \int x^{n-2} \sin(x) dx.$

If you keep expanding it a few times, you might realize that, fully expanded, the integral can be written in the following form:

$$
\int x^n \sin(x) dx = -\left(x^n - \frac{n!}{(n-2)!}x^{n-2} + \frac{n!}{(n-4)!}x^{n-4} - \frac{n!}{(n-6)!}x^{n-6} + \cdots\right)\cos(x) + \left(\frac{n!}{(n-1)!}x^{n-1} - \frac{n!}{(n-3)!}x^{n-3} + \frac{n!}{(n-5)!}x^{n-5} - \cdots\right)\sin(x) + C.
$$

The stuff in the dots keeps going until the x or constant term.

3. $\int x^n e^x dx$ for $n = 0, 1, 2, \ldots$.

Integration by parts with

$$
f(x) = xn
$$

$$
f'(x) = nxn-1
$$

$$
g(x) = ex
$$

$$
g(x) = ex
$$

gives

$$
\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx.
$$

This is a good enough general solution since it reduces the integral into a simpler one. Again, we can keep substituting the integral into itself, like

$$
\int x^n e^x dx = x^n e^x - n \left(x^{n-1} e^x - (n-1) \int x^{n-2} e^x dx \right) = \cdots,
$$

and then try to figure out the pattern. What I came up with is

$$
\int x^n e^x dx = \left(x^n - \frac{n!}{(n-1)!} x^{n-1} + \frac{n!}{(n-2)!} x^{n-2} - \frac{n!}{(n-3)!} x^{n-3} + \dots \right) e^x + C.
$$

The last term in the " \cdots " is $\pm n!$, with the sign depending on whether *n* is even or odd.

5. $\int \arctan(x) dx$

Since we know the derivative of $arctan(x)$, let us use the following choice for integration by parts:

$$
f(x) = \arctan(x)
$$

\n
$$
f'(x) = \frac{1}{1+x^2}
$$

\n
$$
g(x) = x.
$$

Then,

$$
\int \arctan(x) \, dx = x \arctan(x) - \int \frac{x}{1+x^2} \, dx
$$

With $u = 1 + x^2$, the second integral (with $du = 2x dx$) is

$$
\int \frac{x}{1+x^2} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| = \frac{1}{2} \ln|1+x^2|.
$$

Substituting this back in,

$$
\int \arctan(x) dx = x \arctan(x) - \frac{1}{2} \ln(1 + x^2) + C.
$$

We may omit the absolute value signs since $1 + x^2 > 0$ for all x.