Quiz 4

2. (3 points) Determine whether the series $\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 2n} - \sqrt{n^2 + 1}\right)$ converges or diverges.

We first use the divergence test since it's unclear whether the terms of the series actually approach 0.

$$\lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - \sqrt{n^2 + 1} \right) = \lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - \sqrt{n^2 + 1} \right) \frac{\sqrt{n^2 + 2n} + \sqrt{n^2 + 1}}{\sqrt{n^2 + 2n} + \sqrt{n^2 + 1}} \\ = \lim_{n \to \infty} \frac{(n^2 + 2n) - (n^2 + 1)}{\sqrt{n^2 + 2n} + \sqrt{n^2 + 1}} \\ = \lim_{n \to \infty} \frac{2n - 1}{\sqrt{n^2 + 2n} + \sqrt{n^2 + 1}} \cdot \frac{1/n}{1/n} \\ = \lim_{n \to \infty} \frac{2 - \frac{1}{n}}{\sqrt{1 + \frac{2}{n}} + \sqrt{1 + \frac{1}{n}}} \\ = \frac{2 - 0}{\sqrt{1 + 0} + \sqrt{1 + 0}} = 1.$$

Since this is not equal to zero, by the divergence test the series **diverges**.

3. (3 points) Determine whether the series $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{n^3 + 1}$ converges or diverges.

There are a number of ways to deal with this. Perhaps the swiftest is to notice, for $n \ge 1$, that

$$0 \le \frac{\sqrt{n}}{n^3 + 1} \le \frac{\sqrt{n}}{n^3} = \frac{1}{n^{5/2}}$$

We know $\sum_{n=1} \frac{1}{n^{5/2}}$ converges since it is a *p*-series with p = 5/2, and 5/2 > 1. So, by the comparison test, $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^3+1}$ converges, too. It doesn't matter what the starting value for *n* is when determining convergence, so the series in question converges.

Another method is to use the limit comparison test with $\frac{1}{n^{5/2}}$, which you might think of using because the numerator is $n^{1/2}$ and the denominator is basically n^3 .

Yet another is the integral test. A complication is that $\frac{\sqrt{x}}{x^3+1}$ is an *increasing* function on [0, 1]. However, this function is indeed monotonically decreasing on $[1, \infty)$, and all that really matters for the integral test is whether the function is *eventually* monotonically decreasing. So, we will compute $\int_1^\infty \frac{\sqrt{x}}{x^3+1} dx$. After having worked this out, it turns out the following substitution works well:^{*a*} $u^2 = x^3$. The differential is $2u \, du = 3x^2 \, dx$, and since $x^2 = u^{4/3}$,

we have $dx = \frac{2}{3}u^{-1/3} du$. Hence,

$$\int_{1}^{\infty} \frac{\sqrt{x}}{x^{3}+1} dx = \int_{1}^{\infty} \frac{u^{1/3}}{u^{2}+1} \cdot \frac{2}{3} u^{-1/3} du$$
$$= \frac{2}{3} \int_{1}^{\infty} \frac{1}{u^{2}+1} du$$
$$= \frac{2}{3} \lim_{b \to \infty} [\arctan u]_{1}^{b}$$
$$= \frac{2}{3} \left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \frac{\pi}{6}$$

Since this improper integral converged, by the integral test, the original series **converges**.

 $^{a}\mathrm{I'm}$ saying that I solved this by other means, then realized afterwards that this would have been a good substitution. There is no way I would have thought of this ahead of time.

4. (3 points) Determine whether the series $\sum_{n=2}^{\infty} \frac{1 + \cos(n)}{n^3 \sqrt{n^2 - 1}}$ converges or diverges.

Again, we can use a comparison test. Note that if $n \ge 2$, then $\sqrt{n^2 - 1} \ge 1$, so

$$0 \le \frac{1 + \cos(n)}{n^3 \sqrt{n^2 - 1}} \le \frac{1 + \cos(n)}{n^3}$$

Secondly, $-1 \le \cos(n) \le 1$, so $0 \le 1 + \cos(n) \le 2$, hence

$$\frac{1+\cos(n)}{n^3} \le \frac{2}{n^3}.$$

Since $\sum_{n=2}^{\infty} \frac{2}{n^3}$ converges (it is a *p*-series with p = 3 > 1), then by the comparison test the given series **converges**.