The irrationality of e

Kyle Miller and Alexander Paulin

April 2, 2020

In this project, we will show that Euler's constant e is irrational. For some background, recall the Taylor series expansion

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$

where this series converges to e^x for every value of $x \in \mathbb{R}$. By substituting x = 1, we obtain a series representation of e:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

We will show that e is irrational by way of contradiction. That is, by assuming we may write e as a fraction $\frac{a}{b}$ for integers a and b, we will will end up with an absurd conclusion.

Lemma 1. If a and b are positive integers, then $b!\frac{a}{b}$ is an integer.

Proof. Since b! = b(b-1)!, we see

$$b!\frac{a}{b} = b(b-1)!\frac{a}{b} = a(b-1)!$$

and a(b-1)! is an integer.

Lemma 2. Suppose n is a non-negative whole number such that $n \leq b$. Then $\frac{b!}{n!}$ is an integer.

Proof. Since $n \leq b$, we can write $b! = b(b-1)(b-2)\cdots(n+1)n!$. Thus, $\frac{b!}{n!} = b(b-1)(b-2)\cdots(n+1)$, which is an integer.

Lemma 3. If $e = \frac{a}{b}$ for a and b positive integers, then $\sum_{n=b+1}^{\infty} \frac{b!}{n!}$ is an integer.

Proof. First, notice that

$$\sum_{n=b+1}^{\infty} \frac{b!}{n!} = \left(\sum_{n=0}^{\infty} \frac{b!}{n!}\right) - \left(\sum_{n=0}^{b} \frac{b!}{n!}\right)$$
$$= b! \left(\sum_{n=0}^{\infty} \frac{1}{n!}\right) - \left(\sum_{n=0}^{b} \frac{b!}{n!}\right)$$
$$= b! e - \left(\sum_{n=0}^{b} \frac{b!}{n!}\right).$$

For b!e, since we assumed $e = \frac{a}{b}$, then this is an integer by Lemma 1. And, for $\sum_{n=0}^{b} \frac{b!}{n!}$, since in each term we have $n \leq b$, this sum is an integer since each term is an integer by Lemma 2. The difference of integers is an integer, so therefore $\sum_{n=b+1}^{\infty} \frac{b!}{n!}$ is an integer.

Lemma 4. For b a positive integer,

$$\sum_{n=b+1}^{\infty} \frac{b!}{n!} < \sum_{n=1}^{\infty} \left(\frac{1}{b+1}\right)^n.$$

Proof. We have

$$\sum_{n=b+1}^{\infty} \frac{b!}{n!} = \frac{b!}{(b+1)!} + \frac{b!}{(b+2)!} + \frac{b!}{(b+3)!} + \cdots$$

$$= \frac{1}{b+1} + \frac{1}{(b+1)(b+2)} + \frac{1}{(b+1)(b+2)(b+3)} + \cdots$$

$$< \frac{1}{b+1} + \frac{1}{(b+1)(b+1)} + \frac{1}{(b+1)(b+1)(b+1)} + \cdots$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{b+1}\right)^{n}.$$

Lemma 5. If $b \ge 2$ is an integer, then

$$0 < \sum_{n=b+1}^{\infty} \frac{b!}{n!} < 1.$$

Proof. The inequality $0 < \sum_{n=b+1}^{\infty} \frac{b!}{n!}$ is clear since each term of the series is positive. Applying Lemma 4, we have

$$\sum_{n=b+1}^{\infty} \frac{b!}{n!} < \sum_{n=1}^{\infty} \left(\frac{1}{b+1}\right)^n = \frac{\frac{1}{b+1}}{1 - \frac{1}{b+1}} = \frac{1}{b},$$

using the geometric series formula. Since $b \ge 2$ we have $\frac{1}{b} \le \frac{1}{2} < 1$. This proves the lemma.

Theorem 6. The constant e is irrational.

Proof. For sake of contradiction, suppose that $e = \frac{a}{b}$ for a and b positive constants. By Lemma 3, $\sum_{n=b+1}^{\infty} \frac{b!}{n!}$ is an integer. Also, since we know 2 < e < 3, we may deduce $b \ge 2$, so we have that $0 < \sum_{n=b+1}^{\infty} \frac{b!}{n!} < 1$ by Lemma 5. But there are no integers that are strictly between 0 and 1, so this is a contradiction. Therefore, there are no positive integers a and b such that $e = \frac{a}{b}$, which is to say e is irrational.