A series mentioned in lecture

Kyle Miller

Monday, 14 September 2015

The following series was mentioned in lecture:

$$\sum_{n=1}^{\infty} \frac{1 - 2^{(-1)^n}}{n}$$

Does it converge or not? The professor indicated determining (and proving) was somewhat difficult. We will see it diverges.

First, for some clarity, the quantity $2^{(-1)^n}$ is equal to $2^{((-1)^n)}$, since exponentiation groups

according to the size of the text (so, from right to left). These give the sequence $\frac{1}{2}, 2, \frac{1}{2}, 2, \ldots$.

Hence, the series is

$$\frac{1}{2 \cdot 1} - \frac{1}{2} + \frac{1}{2 \cdot 3} - \frac{1}{4} + \dots$$

Let s_n denote the partial sums. We will show that $s_{2n} \to -\infty$ as $n \to \infty$. For convenience, we will define $h_n = \sum_{i=1}^n \frac{1}{i}$, as usual. First, notice

$$s_{2n} = \frac{1}{2 \cdot 1} - \frac{1}{2} + \frac{1}{2 \cdot 3} - \frac{1}{4} + \dots + \frac{1}{2 \cdot (2n-1)} - \frac{1}{2n}$$
$$= \left(\frac{1}{2 \cdot 1} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{2 \cdot (2n-1)}\right) - \left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right)$$
$$= \frac{1}{2} \left(\frac{1}{1} + \frac{1}{3} + \dots + \frac{1}{2n-1}\right) - \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right).$$

The first sum is the odd terms of the partial sum of a harmonic series, which can be obtained by subtracting half of a harmonic series (so it is $h_{2n} - \frac{1}{2}h_n$). The second sum is just from a harmonic series. So,

$$s_{2n} = \frac{1}{2} \left(h_{2n} - \frac{1}{2} h_n \right) - \frac{1}{2} h_n$$
$$= \frac{1}{2} h_{2n} - \frac{3}{4} h_n.$$

Previously we have shown that $\ln n \le h_n \le \ln(n+1)$ by comparing with integrals, so

$$s_{2n} = \frac{1}{2}h_{2n} - \frac{3}{4}h_n \le \frac{1}{2}\ln(2n+1) - \frac{3}{4}\ln n$$
$$= \ln\frac{(2n+1)^{1/2}}{n^{3/4}},$$

which, as $n \to \infty$, gives $s_{2n} \to -\infty$. The series diverges.

Do not be afraid to look at partial sums. In a previous discussion section meeting, the following series was considered:

$$\sum_{n=1}^{\infty} a_n \text{ where } a_n = \begin{cases} \frac{1}{n} & n \text{ odd} \\ -\frac{1}{n^2} & n \text{ even} \end{cases}$$

In this case, we can use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (let its value be c), and so the sum of the even terms is less than c. Hence, $s_{2n} > h_{2n} - \frac{1}{2}h_n - c > \ln(2n) - \frac{1}{2}\ln(n+1) - c = \ln \frac{2n}{(n+1)^{1/2}} - c$. As $n \to \infty$, the right-hand side approaches ∞ , so $s_{2n} \to \infty$ as well. We take care here to use partial sums because, in general, series are not robust to rearrangements.