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Here is the full midterm:

Problems

Midterm 2, Math1B, 20151026 11-12
Correct answers without explanation = no credit

1. Show that 0 < tan(x)− x < 8
9
x3 when 0 < x < π

6
.

2. Show that
∫ a/2
0

√
2ax− x2 dx = a2

[
π
6
−
√
3
8

]
when a > 0.

3. Assume that the time to solve one midterm problem is exponentially distributed with
mean = 10 minutes. The probability distribution of the time for solving two midterm
problems is then given by Erlang’s probability density function

f(x) =

{
0 if x < 0

λ2xe−λx if x ≥ 0 and λ = 1
10

min−1.

(a) Show that
∫∞
0
xke−λx dx = k!

λk+1 for k = 1, 2, . . . and λ > 0.

(b) Show that the mean and the standard deviation of the time to solve two midterm
problems are µ = 20 min and σ = 10 ·

√
2 min.

Remember: µ =
∫∞
−∞ xf(x) dx and σ2 =

∫∞
−∞(x− µ)2f(x) dx.
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Solutions

Like in the midterm 2 review, I am experimenting with giving solutions with all steps enu-
merated. This is in more detail than is expected on an exam, but the intended audience for
this is a student curious about all the steps. Of course, these are just one set of surely many
ways to solve the problems.

1. (a) The only theorems involving inequalities are comparison tests or Taylor’s inequal-
ity. The cube on the right side paired with the fact that the polynomial x is
subtracted from tanx suggests that it might be Taylor’s inequality, at least for
the right-hand inequality.

(b) Let us compute the n = 2 Taylor polynomial:

i. d
dx

tanx = sec2 x

ii. d2

dx2
tanx = 2 sec2 x tanx

iii. Evaluating the function, its derivative, and its second derivative at 0 gives
the Taylor polynomial T2(x) = 0 + 1

1!
x+ 0

2!
x2 = x.

(c) Hence, R2(x) = tan(x)− x.

(d) Claim: the third derivative is increasing on the domain 0 ≤ x ≤ π
6
.

i. d3

dx3
tanx = 2(2 sec2 tan2 x+ sec4 x)

ii. This can be rewritten using sec2 x+ 1 = tan2 x as d3

dx3
tanx = 2(1 + 4 tan2 x+

3 tan4 x).

iii. The function tanx is increasing on the domain 0 ≤ x ≤ π
6

since its derivative
is sec2 x = 1

cos2 x
, and on 0 ≤ x ≤ π

6
, cos x is positive.

iv. The square of an increasing function is still increasing, and so is the square
of a square. The sum of increasing functions is an increasing function, and
so is adding a constant to an increasing function.

v. Therefore 2(1 + 4 tan2 x+ 3 tan4 x) is increasing on the domain 0 ≤ x ≤ π
6
.

(e) The third derivative is an even function: 2(1 + 4 tan2(−x) + 3 tan4(−x)) = 2(1 +
4(− tanx)2 + 3(− tanx)4) = 2(1 + 4 tan2 x+ 3 tan4 x).

(f) For each 0 < d < π
6
.

i. Since the third derivative is increasing, for all x satisfying 0 ≤ x ≤ d we have
2(1 + 4 tan2 x+ 3 tan4 x) ≤ 2(1 + 4 tan2 d+ 3 tan4 d).

ii. Again since it is increasing, since d < π
6
, 2(1 + 4 tan2 d + 3 tan4 d) < 2(1 +

4 tan2 π
6

+ 3 tan4 π
6
) = 2(1 + 4( 1√

3
)2 + 3( 1√

3
)4) = 48

9
.

iii. By evenness, 2(1+4 tan2 d+3 tan4 d) is an upper bound for the third derivative
on the domain −d ≤ x ≤ d. And this upper bound is strictly less than 48

9
.

(g) For all x satisfying 0 < x < π
6
:

i. There is some d between x and π
6

(there are infinitely many; just choose one).
This number satisfies 0 < d < π

6
since 0 < x.
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ii. Let M = 2(1 + 4 tan2 d + 3 tan4 d). We have shown that this is an upper
bound for the third derivative. Since the third derivative is always positive,
this is also an upper bound for the absolute value of the third derivative.

iii. Therefore, by Taylor’s inequality, |R2(x)| ≤ M
3!
|x|3, which is satisfied by the

current x since −d ≤ x ≤ d.

iv. In fact, M < 48
9

and x is positive, so |R2(x)| < 48/9
3!
x3 = 8

9
x3.

v. And since absolute value can only make something larger, R2(x) < 8
9
x3.

(h) Since we showed this was true whenever 0 < x < π
6
, we can say that R2(x) < 8

9
x3

for all 0 < x < π
6
, and because R2(x) = tan(x) − x, this proves the right-hand

inequality.

(i) For the left-hand inequality, notice that the derivative of tan(x)−x is sec2(x)−1 =
tan2 x.

(j) Since tan2 x > 0 for all 0 < x < π
6
, tan(x)− x is increasing.

(k) Because tan(0)− 0 = 0, we see that tan(x)− x > 0 for all x satisfying 0 < x < π
6
.

(l) Putting the two parts of the inequality together, we conclude 0 < tan(x)−x < 8
9
x3

for all x satisfying 0 < x < π
6
.

2. (a) This is a square root of a quadratic, so it is likely a trigonometric substitution.

(b) Trigonometric substitutions in the book were all involved integrands of the form√
±c2 ± x2, so we will complete the square.

i. Just for the sake of reducing it to a previous type of problem, we will complete
the square of x2 − 2ax then take the negative of that.

ii. The linear coefficient is −2a, and half that is −a, so the square part is of the
form (x− a)2 = x2 − 2ax+ a2. Hence, x2 − 2ax = (x− a)2 − a2.

iii. Therefore 2ax− x2 = a2 − (x− a)2.

(c) Thus, the integral we are to compute is
∫ a/2
0

√
a2 − (x− a)2 dx.

(d) Let x− a = a sin θ. Then dx = a cos θ dθ.

(e) When x = 0, θ = −π
2

for 0 − a = a sin(−π
2
). When x = a

2
, θ = −π

6
for a

2
− a =

a sin(−π
6
).

(f) The substitution gives the integral
∫ −π/6
−π/2 a

2 cos2 θ dθ.

(g) Recall the that cos2 θ = 1
2
(1 + cos(2θ)).

(h) Then this is a2
∫ −π/6
−π/2

1
2
(1 + cos(2θ)) dθ = a2

[
1
2
(θ + 1

2
sin(2θ))

]−π/6
−π/2

(i) Evaluating, this is a2(1
2
(−π

6
+ 1

2
−
√
3

2
)− 1

2
(−π

2
+ 1

2
· 0)) = a2(π

6
−
√
3
8

).

3. (a) We are considering
∫∞
0
xke−λx dx first, for k = 1, 2, . . . and λ > 0.

i. Since this is improper, let b be the upper bound for a new definite integral,
then we will take the limit b→∞. This is so that we are careful when doing
integration by parts.
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ii. Let u = xk and dv = e−λx dx. With these, du = kxk−1 dx and v = − 1
λ
e−λx.

Hence,
∫ b
0
xke−λx dx =

[
− 1
λ
xke−λx

]b
0

+ k
λ

∫ b
0
xk−1e−λx dx.

iii. We see
[
− 1
λ
xke−λx

]b
0

= − 1
λ
bke−λb, and limb→∞

bk

eλb
= 0. I’m pretty sure this is

something you’ve shown before, but one way to prove it is the following:

A. The statement we would like to prove is that for all k = 0, 1, . . . , then
limb→∞

bk

eλb
= 0.

B. For k = 0, this limit is limb→∞
1
eλb

, which is zero because eλb increases
without bound. (You could give a proof of this limit. A schmancy way
to prove this is to note that

∑∞
n=1

1
eλn

converges because eλ > 0, so
limn→∞

1
eλn

= 0, and since f(x) = 1
eλx

is continuous, limb→∞
1
eλb

= 0 as
well.)

C. For k > 0, if the limit for k−1 is zero: This limit is limb→∞
bk

eλb
, which is an

∞
∞ indeterminate form, so by l’Hopital’s rule, this limit is k

λ
limb→∞

bk−1

eλb
=

k
λ
· 0 = 0.

D. By induction, the limit is zero for all k = 0, 1, . . . .

Alternatively, you can use the ratio test:

A. | (n+1)k/eλ(n+1)

nk/eλn
| = (n+1)k

nkeλ
, which approaches 1

eλ
as n→∞.

B. Since eλ > 1, the ratio test says
∑

n→∞
nk

eλn
converges.

C. Hence limn→∞
nk

eλn
= 0.

D. Since f(x) = 1
eλx

is continuous, limb→∞
bk

eλb
= 0, too. (The first was limit

where n is an integer, and the second is limit where b is any real number.)

iv. Thus,
∫∞
0
xke−λx dx = k

λ

∫∞
0
xk−1e−λx dx.

v. Thus,
∫∞
0
xke−λx dx = k

λ
· k−1

λ
· k−2

λ
· · · 2

λ
· 1
λ
·
∫∞
0
e−λx dx = k!

λk

∫∞
0
e−λx dx.

vi.
∫∞
0
e−λx dx = limb→∞− 1

λ
(e−λb − 1) = − 1

λ
.

vii. Therefore
∫∞
0
xke−λx dx = k!

λk+1 .

(b) i. The probability distribution for solving two midterm problems is given to us
(Erlang’s probability density function).

ii. The mean first:

A. We plug the given f into the given formula µ =
∫∞
−∞ xf(x) dx.

B. Since f(x) is 0 for all x < 0, µ =
∫∞
0
x(λ2xe−λx) dx.

C. λ = 1
10

min−1 is given to us.

D. This integral, simplified, is λ2
∫∞
0
x2e−λx dx, so we may use (a) to compute

the integral, with k = 2.

E. So it is λ2 2!
λ3

= 2
λ

= 20 min.

iii. The standard deviation second:

A. We again plug the given f into the given formula σ2 =
∫∞
−∞(x−µ)2f(x) dx.

B. This is
∫∞
0

(x− 20)2(λ2xe−λx) dx.

C. Expanding, this is λ2
(∫∞

0
x3e−λx dx− 40

∫∞
0
x2e−λx dx+ 400

∫∞
0
xe−λx dx

)
.
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D. And using the formula from (a) with k = 3, 2, 1, this is λ2( 3!
λ4
− 40 2!

λ3
+

400 1!
λ2

) = 6
λ2
− 80

λ
+ 400 = 600− 800 + 400 = 200 min2.

E. This is σ2. Therefore σ = 10
√

2 min.
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