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This note goes into a bit more detail than in the textbook about what is going on
with homogeneous linear differential equations with constant coefficients. In other words,
differential equations which look like

dny

dtn
+ cn−1

dn−1y

dtn−1
+ · · ·+ c1

dy

dt
+ c0 = 0. (1)

with ci ∈ R. The book talks in particular about the case d2y
dt2

+ c1
dy
dt

+ c0 = 0, but the general
case is more interesting and, in my opinion, more illuminating.

First, let us talk a bit about algebra. We have seen before in Math 1A that the derivative
is linear, which means for f, g differentiable functions and c ∈ R,

d

dt
(cf) = c

df

dt

d

dt
(f + g) =

df

dt
+
dg

dt
,

which, using the new word of the week, means that linear combinations are transformed into
linear combinations:

d

dt
(c1f1 + c2f2 + · · ·+ cnfn) = c1

df1
dt

+ c2
df2
dt

+ · · ·+ cn
dfn
dt
.

This is an important property. Linear transformations like this are the main subject of linear
algebra. Do not miss the fact that this is saying that whenever f1, . . . , fn are differentiable
functions, then c1f1 + c2f2 + · · ·+ cnfn is a differentiable function, too. In fact, if f1, . . . , fn
are solutions to a homogeneous differential equation, then so is c1f1 + c2f2 + · · ·+ cnfn.

What is the derivative anyway? A profitable point of view is that it is a function which
takes a differentiable function and transforms it into another function (its derivative). Given
function-transforming functions T1 and T2, it is also the case that c1T1 + c2T2 is a function-
transforming function by the rule (c1T1 + c2T2)f = c1T1(f) + c2T2(f). Also, (T1T2)f =

T1(T2(f)). If T1 = d
dt

and T2 = d2

dt2
, then we have (c1

d
dt

+ c2
d2

dt2
)f = c1

df
dt

+ c2
d2f
dt2

. This may
seem abstract, but then we can rewrite the differential equation 1 as(

dn

dtn
+ cn−1

dn−1

dtn−1
+ · · ·+ c1

d

dt
+ c0

)
y = 0.
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With the rule that d
dt

dk

dtk
= dk+1

dtk+1 (the derivative of the kth derivative of something is the
(k + 1)th derivative of it), this can factor with complex numbers λi ∈ C as(

d

dt
− λ1

)
. . .

(
d

dt
− λn

)
y = 0.

The reason it can factor is the fundamental theorem of algebra: every polynomial has at
least one root, which has the consequence (due to long division) that every polynomial can
factor into a product of linear terms.

An interesting property of the linear factors is that they commute:(
d

dt
− λ

)(
d

dt
− µ

)
=

d2

dt2
− (λ+ µ)

d

dt
+ λµ =

(
d

dt
− µ

)(
d

dt
− λ

)
.

Suppose λ1, . . . , λr ∈ C are the distinct roots in the factorization, with λi having multiplicity
ki, so that the differential equation can be written as(

d

dt
− λ1

)k1

. . .

(
d

dt
− λr

)kr

y = 0. (2)

The commutativity has the consequence that whenever y is a solution to
(
d
dt
− λj

)kj y = 0,
then it is a solution to the whole differential equation, since this jth term can be brought to
the end:(

d

dt
− λ1

)k1

. . .

(
d

dt
− λj−1

)kj−1
(
d

dt
− λj+1

)kj+1

. . .

(
d

dt
− λr

)kr ( d

dt
− λj

)kj

y = 0,

where this last term will be zero due to y being a solution, and zero is a solution to the rest
of the terms, so it is indeed a solution to the full differential equation.

A nice consequence of commutativity and linearity is that to solve this differential equa-
tion, we just need to solve each of these differential equations:(

d

dt
− λ1

)k1

y = 0

...(
d

dt
− λr

)kr

y = 0,

and then linear combinations of these solutions are solutions to the full differential equation.
We will also be able to say that this covers every possible solution to the differential equation.

Thus, we will now restrict our attention to the following differential equation:(
d

dt
− λ

)k

y = 0.

where k ∈ N and λ ∈ C. There are some clear solutions to this differential equation, for
instance y = 0 and also y = eλt, where the latter is because

(
d
dt
− λ

)
eλt = d

dt
eλt − λeλt =

2



λeλt − λeλt = 0. (In other words, ( d
dt
− λ)y = 0 is the differential equation y′ = λy.) But,

there are in fact k linearly independent solutions, where eλt is one of them.
We will show the general solution to this differential equation by induction on k. (It

might be possible by using Taylor series, too, but induction lets us use integrating factors as
we learned in class.)

Lemma 1. Solutions to the differential equation
(
d
dt
− λ

)k
y = 0, with k ≥ 1, are of the form

y = C0e
λt + C1te

λt + · · ·+ Ck−1t
k−1eλt (3)

for arbitrary constants C0, . . . , Ck−1.

Proof. We will induct on k. When k = 1, we have already seen that this is true. So, assume
it is true for k− 1, and we will prove it is true for k. We can break our differential equation
up like this: (

d

dt
− λ

)k−1(
d

dt
− λ

)
y = 0.

Our induction hypothesis says that the only solutions to this are those such that
(
d
dt
− λ

)
y =

C0e
λt + C1te

λt + · · ·+ Ck−2t
k−2eλt, hence the differential equation becomes(

d

dt
− λ

)
y = C0e

λt + C1te
λt + · · ·+ Ck−2t

k−2eλt,

also written as

dy

dt
− λy = C0e

λt + C1te
λt + · · ·+ Ck−2t

k−2eλt.

Finding the integrating factor e−λt, we have

d

dt

(
e−λty

)
= C0 + C1t+ · · ·+ Ck−2t

k−2

so then for some constant K,

e−λty = K + C0t+
1

2
C2t

2 + · · ·+ 1

k − 1
Ck−2t

k−1.

With this, the solution can be written as

y = Keλt + C0te
λt +

1

2
C1t

2eλt + · · ·+ 1

k − 1
Ck−2t

k−1eλt,

which by renaming variables (with D0 = K, and Di = 1
i
Ci−1 for i ≥ 1) is of the required

form. Hence, this completes the induction argument.
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This gives us a bunch of solutions to the full differential equation 2. Are these all of the
solutions, though? The answer is “yes,” but the proof is somewhat annoying so here is a
sketch. For this, we first need to do a calculation. Let λ, µ ∈ C be distinct complex numbers,
and let n ≥ 0. Then, let us solve the differential equation(

d

dt
− µ

)
y = tneλt.

By finding the integrating factor e−µt and integrating by parts, we can get that the solution
is of the form y = p(t)eλt, where p(t) is a polynomial of degree n. So, if y is a solution

to differential equation 2, we know that z =
(
d
dt
− λ2

)k2
. . .

(
d
dt
− λr

)kr
y is a solution to(

d
dt
− λ1

)k1
z = 0, hence z = C0e

λt + · · · + Ck1−1e
λt. By the above calculation and by

induction, we can conclude that y must actually be a linear combination of solutions of the
form in equation 3.

For a second-order homogeneous linear differential equation, as you have seen in the
book, we have differential equations of the following flavors:(

d

dt
− λ1

)(
d

dt
− λ2

)
y = 0

with λ1 6= λ2, where either both are real or λ2 = λ1,
1 and(

d

dt
− λ

)2

y = 0

with λ ∈ R.
In the second case, solutions according to our result are of the form y = C0e

λt + C1te
λt,

and in the first case y = C0e
λ1t + C1e

λ2t.
The book distinguishes between real solutions and complex solutions for the first case.

The reason is that they want all solutions to differential equations to be real (where we have
been allowing for complex-valued solutions so far!). Using Euler’s identity eiθ = cos θ+i sin θ,
they take the complex case and rewrite, where λ = α + βi:

y = C0e
(α+βi)t + C1e

(α−βi)t

=
(
C0e

βit + C1e
−βit) eαt

= (C0 cos(βt) + C1 cos(−βt) + C0i sin(βt) + C1i sin(−βt)) eαt

= ((C0 + C1) cos(βt) + (C0 − C1)i sin(βt)) eαt.

The condition for this being real is for y = y, which gives C0 +C1 = C0 +C1 and −C0 +C1 =
C0 − C1. By adding these equations together, we see C0 = C1, so letting A be half the real
part of C0 and B being half the imaginary part of C0, we get the textbook’s general real
solution

y = (A cos(βt) +B sin(βt)) eαt =
√
A2 +B2 sin

(
βt+ tan−1

A

B

)
eαt.

1These are the only two cases for roots when the differential equation has real coefficients because of the
fact that the complex conjugate of a root is also a root.
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