
Final Exam Review
Kyle Miller
Tuesday, 8 December 2015

1 Topics

This is a short overview of topics we have covered since the last midterm. Of course, older
topics are still relevant, so it would be good to review them.

1.1 Differential equations (Chapter 9)

1. A differential equation is an equation involving a function y along with its derivatives
y′, y′′, etc.

2. Interpret dP
dt

= kP as a physical system, both when k is positive and when k is negative.
Same for the logistic differential equation dP

dt
= kP (1− P

M
).

3. How do you find equilibrium solutions? What does it mean for an equilibrium solution
to be stable?

4. Model the motion of a spring-mass system (answer: mx′′+ kx = 0). Solve it. Find the
equation of motion when the mass is released from rest. Find the equation of motion
when the mass is launched with a particular velocity from the rest length of the spring.

5. Reinterpret the problem of integration as the problem of solving a differential equation.

6. Find y′′(0) given y′ = xy3 and y(0) = 2, without solving the differential equation.

7. Recall the calculus-based graphing rules: using critical points, places where the deriva-
tive is positive, where the derivative is negative. How can these apply to the problem
of quickly sketching solutions to differential equations?

8. How is this similar to direction fields?

9. Euler’s method with step size h is a sequence of points (xn, yn) such that (x0, y0) is
the initial condition and (xn, yn) = (xn−1 +h, yn−1 +hF (xn−1, yn−1)). Draw a diagram
which helps you remember this (like Figure 15 on page 590).

10. When do over- and under-estimates occur with Euler’s method? (What does it have
to do with concavity?)

11. Separable equations: how to identify them and how to begin solving them.

12. Orthogonal trajectories: how to come up with the differential equation from the family
of curves (page 597).

13. Mixing problems: how to model the dissolved matter by finding the net flows.
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14. How do you deal with antiderivatives of 1
k−y? (You get an absolute value: what is

the case analysis? What does it physically represent? What does it have to do with
equilibrium solutions?)

15. Integral equations (exercises 33-35 in 9.3). Use the fundamental theorem of calculus
and take derivatives until they become differential equations.

16. Chapter 9.4 contains the solutions to different population growth models. For the
logistic equation, think about that inflection point and what it means. For instance, if
you know the inflection point, can you find the carrying capacity?

17. The order of a differential equation is the highest-order derivative which appears.

18. A first-order linear differential equation is a differential equation of the form y′ +
P (x)y = Q(x) for P and Q being some functions of x (and only x). These are solved
by multiplying both sides by the integrating factor I(x) = e

∫
P (x) dx to get (I(x)y)′ =

I(x)Q(x), so y = 1
I(x)

∫
I(x)Q(x) dx. (Notice this is like an anti-product-rule.) Be

careful with the + C.

19. The equation might not look like a linear differential equation. For instance, in exercise
23 of 9.5 (the Bernoulli differential equation), there is a clever substitution to get the
right form.

20. What is the relationship between a limiting velocity (or terminal velocity) and equilib-
ria?

21. What are phase planes and phase trajectories? How do you sketch solutions given a
phase trajectory? What is the limitation in representing the time axis?

22. Page 632 exercise 25 looks nice (length of a caternary).

23. A differential equation doesn’t involve x is called autonomous. For instance, y′ = y+1.
Solutions are always “time-invariant:” as in, if f is a solution, then so is g(x) = f(x+a)
for every a.

1.2 Second-order differential equations (Chapter 17)

1. A second-order linear differential equation has the form y′′ + Q(x)y′ + R(x)y = G(x)
for some functions Q,R,G. If G(x) = 0 for all x, then this is called homogenous, and
otherwise nonhomogeneous.

2. If y1 and y2 are both solutions to a linear homogeneous equation, then any linear
combination of y1 and y2 is also a solution. That is, y = c1y1 + c2y2 is a solution for
all c1, c2 ∈ R.

3. Two functions are linearly independent if they are not scalar multiples of each other.
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4. If y1 and y2 are linearly independent solutions to a homogeneous second-order linear
differential equation, then every solution is a linear combination of y1 and y2. (So,
y = c1y1 + c2y2 covers every possible solution.)

5. For a, b ∈ R, you can solve y′′ + ay′ + by = 0 by examining the roots r1, r2 of the
characteristic equation r2 + ar + b = 0. If they are real roots, then the solution is
y = c1e

r1x + c2e
r2x. If r1 = r2 is a double root, then the solution is y = c1e

r1x +
c2xe

r1x. If r1 and r2 are complex roots, they are α ± βi, and the (real) solution is
y = eαx(c1 cos(βx) + c2 sin(βx)).

6. Solving an initial value problem for these amounts to finding c1 and c2 by making a
system of two equations, one involving the derivative.

7. Solving a boundary value problem for these amounts to finding c1 and c2 by making
a system of two equations, both coming from y evaluated at some point. Warning: a
solution is not guaranteed to exist.

8. Nonhomogeneous second-order linear equations with constant coefficients are solved
by finding one particular solution, then adding the homegenous solutions from the
complementary equation.

9. The method of undetermined coefficients is one way of possibly finding a particular
solution. The guess should not be a solution to the complementary equation (since it
won’t work). A way to get around this sometimes is to multiply the guess by x.

10. Don’t forget that if either sin or cos show up, then both show up in the guess, with
their own polynomials.

11. The method of variation of parameters involves finding functions u1 and u2 and two
solutions y1 and y2 of the complementary equation such that 0 = u′1y1 + u′2y2 and
y = u1y1 + u2y2 (don’t forget that y1 and y2 solve the complementary equation).

12. We can precompute much of the method for the equation y′′ + ay′ + by = G(x). In
fact, one should check that this is solving 0 = u′1y1 + u′2y2 and u′1y

′
1 + u′2y

′
2 = G(x).

And, (check this) you can solve these using

u1 =

∫
y2G(x)

y′1y2 − y1y′2
dx u2 =

∫
y1G(x)

y1y′2 − y′1y2
dx,

Just make sure you don’t forget to add constants after integrating, and then solving
for the constants.

13. Damping force as used in the book is proportional to velocity. That way you get a
second-order linear differential equation.

14. Forced vibrations are modeled using a nonhomogeneous linear differential equation.
The homogeneous components to the solution represent the initial conditions of the
system, and, loosely speaking, “taking the limit to infinity” (assuming the real part is
negative) lets these transients decay to zero.
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15. A solution to a differential equation might have a Taylor series at a point a. So, it is
natural to try solving a differential equation letting y =

∑∞
n=0 cn(x − a)n and solving

for the coefficients cn. Perhaps you will be able to identify which elementary functions
the series is for by the end. The method is to look at both sides of the equation and
locate the corresponding coefficients for each power of x, since they have to be equal.

2 Problems

1. Solve the differential equation (x − 3)y′ + 2y = 0 by recognizing it as a separable
differential equation.

2. Solve the differential equation (x−3)y′+2y = 0 by recognizing it as a linear differential
equation.

3. Solve the differential equation (x− 3)y′ + 2y = 0 using a series.

3 Solutions

2. Dividing both sides by x − 3, we get y′ + 2
x−3y = 0. The integrating factor is

exp(
∫

2
x−3 dx) = exp(2 ln|x − 3|) = (x − 3)2. Muliplying both sides by this, we get

((x− 3)2y)′ = 0, so (x− 3)2y = C, and y = C
(x−3)2 .

3. Suppose a solution is of the form y =
∑

n=0 anx
n. First, a derivative,

y′ =
∑
n=1

nanx
n−1.

Then, multiplied by x− 3,

(x− 3)y′ = (x− 3)
∑
n=1

nanx
n−1

=
∑
n=1

nanx
n −

∑
n=1

3nanx
n−1.

Adding 2y,

(x− 3)y′ + 2y =
∑
n=1

nanx
n −

∑
n=1

3nanx
n−1 +

∑
n=0

2anx
n

=
∑
n=1

nanx
n −

∑
n=0

3(n+ 1)an+1x
n +

∑
n=0

2anx
n

=
∑
n=1

nanx
n − 3a1 −

∑
n=1

3(n+ 1)an+1x
n + 2a0 +

∑
n=1

2anx
n

= 2a0 − 3a1 +
∑
n=1

(nan − 3(n+ 1)an+1 + 2an)xn

= 2a0 − 3a1 +
∑
n=1

((n+ 2)an − 3(n+ 1)an+1)x
n.
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For this to equal zero, then 2a0− 3a1 = 0 and, for n ≥ 1, (n+ 2)an− 3(n+ 1)an+1 = 0.
This means that a1 = 2

3
a0, and for n ≥ 1, an+1 = n+2

3(n+1)
an.

Claim:1 for n ≥ 0, an = n+1
3n
a0. We prove this by induction.

• Case n = 1. Then a0 = 0+1
30
a0.

• Case n > 1. Assume the claim is true for n − 1. Then an = a(n−1)+1 =
(n−1)+2

3((n−1)+1)
an−1 = n+1

3n
an−1 = n+1

3n
(n−1)+1
3n−1 a0 = n+1

3·3n−1a0 = n+1
3n
a0.

This completes the induction proof, so the claim is true. Thus, y =
∑∞

n=0
a0(n+1)

3n
xn.

Here is what we can do to identify this as some elementary function. Rewriting this as
y = a0

∑∞
n=0(n + 1)(x

3
)n and integrating, we get

∫
y dx = 3a0

∑
n=0(

x
3
)n+1 = 3a0

1−x
3
. So

then, taking the derivative of this, we get y = a0
(1−x

3
)2

= 9a0
(3−x)2 .

1Found by privately finding the pattern.
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