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Let an = (1 + 1
n
)n. This problem is ultimately asking us to prove that an converges. Is

this believable? Here are some tables for parts of the sequence:

n an

1 2.000
2 2.250
3 2.370
4 2.441
5 2.488
6 2.522
7 2.546
8 2.566
9 2.581

10 2.594

n an

101 2.705
102 2.705
103 2.705
104 2.705
105 2.705
106 2.706
107 2.706
108 2.706
109 2.706
110 2.706

n an

1001 2.717
1002 2.717
1003 2.717
1004 2.717
1005 2.717
1006 2.717
1007 2.717
1008 2.717
1009 2.717
1010 2.717

n an

10001 2.718
10002 2.718
10003 2.718
10004 2.718
10005 2.718
10006 2.718
10007 2.718
10008 2.718
10009 2.718
10010 2.718

It seems to be approaching some number near 2.718, but that in itself isn’t proof of
convergence. It might just be increasing extremely slowly. For instance, try looking at
f(x) = log10(log10 x) and check the limit as x→∞.1

Another question: what is the motivation for studying this function? If you are familiar
with compound interest, this is the formula for the value of 1 unit of money after 1 unit
of time at 100% interest with n compoundings. Generally speaking, when r is the interest
rate and p is the principal, banks give r

n
interest per compounding cycle. This means that

if pi is the principal at the end of cycle i, then pi+1 = (1 + r
n
)pi. A closed form for this is

pi = (1 + r
n
)ip0, with p0 being the initial principal. So, this problem is r = 1, p0 = 1, and

i = n, with the intent to understand better what happens when the number of compounding
cycles increases to ever larger numbers.

With that said, what this problem does not address is what this sequence converges to.
It is a curious thing that mathematics can give us the knowledge of something’s existence
without giving us the thing itself.

(a) We will do this step in two ways, first by plain algebra, and second by making use of
calculus.

1For instance, even 1010
100

, which is a number with a googol digits, has f(1010
100

) = 100.
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Let a and b be two numbers such that 0 ≤ a < b.2 Since bn+1 − an+1 factors as
(b− a)(bn + bn−1a + bn−2a2 + · · ·+ an−iai + · · ·+ ban−1 + an), we have that

bn+1 − an+1

b− a
= bn + bn−1a + · · ·+ ban−1 + an

< bn + bn−1b + · · ·+ bbn−1 + bn

= bn + bn + · · ·+ bn + bn,

where the inequality is from the assumption that b > a: everything is positive, hence
bka` < bkb`. Since the powers on b run from n down to 0 in the factorization, there are
n + 1 copies of bn in the end, hence

bn+1 − an+1

b− a
< (n + 1)bn,

as required.

Here is an (arguably superior) way to do it. Let f(x) = xn+1, which is continuous and
differentiable. By the mean value theorem, there is some c between a and b such that

bn+1 − an+1

b− 1
= f ′(c) = (n + 1)cn.

And since c < b, we have (n + 1)cn < (n + 1)bn, which gives the required inequality.

For intuition as far as interpreting the mean value theorem, notice that the left side of
the required result is the secant line of f(x) = xn+1 between a and b, and that the right
side is the derivative of f evaluated at b. Since f is concave up, the tangent line at the
end of a secant line must be steeper than the secant line, which gives the inequality.

(b) With this result, we multiply both sides by the denominator to obtain

bn+1 − an+1 < (b− a)(n + 1)bn

= (bn + b− a(n + 1))bn = bn+1 − ((n + 1)a− nb)bn.

Subtracting bn+1 from both sides, we obtain

−an+1 < −((n + 1)a− nb)bn,

and negating both sides, we obtain the required inequality:

an+1 > ((n + 1)a− nb)bn.

(c) Let a = 1 + 1
n+1

and b = 1 + 1
n
. First, we see that 0 ≤ a since a is 1 plus a positive

number, and second we see that a < b since n + 1 > n implies 1
n+1

< 1
n

implies

2Unfortunately, Stewart uses the letter a for both this number and for the sequence an. These are different
uses of the same letter, but the subscript is enough for disambiguation.

2



1 + 1
n+1

< 1 + 1
n
, so we may use the inequality from (b). Substituting, we have(

1 +
1

n + 1

)n+1

>

(
(n + 1)

(
1 +

1

n + 1

)
− n

(
1 +

1

n

))(
1 +

1

n

)n

= ((n + 2)− (n + 1))

(
1 +

1

n

)n

=

(
1 +

1

n

)n

.

Since the left side is the sequence at n+ 1 and the right side is the sequence at n, this
establishes that

an+1 > an,

and therefore, since this is true for all n, the sequence is increasing.

(d) Now let a = 1 and b = 1 + 1
2n

, and again we note 0 ≤ a < b. We substitute these into
the inequality from (b) to get

1n+1 >

(
(n + 1) · 1− n

(
1 +

1

2n

))(
1 +

1

2n

)n

,

which simplifies to

1 >
1

2

(
1 +

1

2n

)n

.

This is equivalent to 2 >
(
1 + 1

2n

)n
. Both sides are positive, so by squaring both sides

we obtain

4 >

(
1 +

1

2n

)2n

= a2n,

which is the desired inequality.

(e) We now claim that an is bounded above by 4. We have already showed that an is
bounded above by 4 when n is even. When n is odd, then n + 1 is even, and we can
make use of the fact an is an increasing sequence to say an < an+1 < 4. This proves
that an < 4 for all n.

(f) Therefore, since an is an increasing function which is bounded above, the sequence
converges by Theorem 12 (i.e., limn→∞ an exists).

A quick word about writing proofs: notice that in all of the arguments above, the con-
clusions are derived from things which are known. Never begin with the conclusion and
work backwards unless you have a compelling reason to do so, and you are sure each of your
steps are logically correct (of course you are free to do whatever you like in your private
scratchwork). Notice also that it is written in a way which is like an essay with an audience
in mind: I intended for it to be read and (hopefully) understood. “A proof is that which
convinces a reasonable [person].”
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