You have 20 minutes to complete the quiz. No calculators.

Name:

1. (2 points) Write down the equation for the line tangent to the curve $f(x) = 3x^2 - 2x$ at x = 1.

2. (3 points) Define

$$f(x) := \frac{3x^3 - 2x^2 - 5}{x^3 - 8}.$$

(a) Using the fact that $\lim_{x\to\infty} \frac{1}{x^n} = 0$ for n > 0, compute $\lim_{x\to\infty} f(x)$.

(b) What are the horizontal and vertical asymptotes of f?

(c) Recall the definition for limits as $x \to \infty$: We say that $\lim_{x \to \infty} f(x) = L$ if and only if for every $\epsilon > 0$ there is some $M \ge 0$ such that whenever x > M it follows that $|f(x) - L| < \epsilon$. Using the definition, prove that $\lim_{x \to \infty} \frac{1}{x^n} = 0$ for n a positive integer (i.e. n can be $1, 2, \ldots$). Start by finding M for a given ϵ and n.