Review for Math 1A Final

May 6, 2015

Kyle Miller https://math.berkeley.edu/~kmill/math1asp15

Make sure to study the topics in "Midterm 1 review" and "Midterm 2 review" as well.

- 1. Be able to define what it means for a function to have asymptotes (vertical, horizontal, and slant).
- 2. The Mean Value Theorem. Prove that a function f is a constant function if and only if f'(x) = 0 for all x. Prove that a differentiable function is increasing if (and only if) the derivative is always positive. Prove that $x + 1 \le e^x$ for all $x \ge 0$.
- 3. l'Hospital's rule (for 0/0 and ∞/∞), and how to get various indeterminate forms to surrender themselves to the rule of l'Hospital. In particular, $0 \cdot \infty$, $\infty \infty$, 1^{∞} , 0^{0} , ∞^{0} . Devise examples of indeterminate forms which limit to any value of your choosing.
- 4. The increasing/decreasing test. The first derivative test. The definition of concave upward/downward. The concavity test. Inflection points. The second derivative test (positive is happy face, so local minimum; negative is sad face, so local maximum).
- 5. Curve sketching guidelines: A. Domain. B. Intercepts. C. Symmetry. D. Asymptotes. E. Increasing/Decreasing intervals. F. Local optima. G. Concavity and points of inflection. Remember for each interesting point to compute f(x) and f'(x) there (if it exists) to enhance the sketch.
- 6. Define the antiderivative of a function. Prove that the difference between two antiderivatives on an interval is a constant (hence, if F(x) is an antiderivative of f, then every antiderivative is of the form F(x) + C with C a constant).
- 7. Remember an antiderivative for each of the following functions of x, where F, G are antiderivatives of f, g, respectively: x^n $(n \neq -1)$, 1/x, cf(x), f(x) + g(x), e^x , $\cos x$, $\sin x$, $\sec^2 x$, $\sec x \tan x$, $1/\sqrt{1-x^2}$, $1/(1+x^2)$.
- 8. Write down the definition of the Riemann definite integral $\int_a^b f(t) dt$ of a continuous function f from a to b. Interpret the parts of the definition intuitively as areas of rectangles. Be aware of left-, right-, and mid- Riemann integral formulations (though in the limit they give the same result).
- 9. Find the area between $y = \sin x$ and y = 0 on $[0, 2\pi]$. Make sure the areas are positive.
- 10. If you can stomache it, compute the definite integral $\int_0^3 (x^2 + x + 1) dx$ from the definition of the definite integral. You will need the sum formulas 5,6,7 on page 374.
- 11. Remember the following properties: $\int_a^b dx = b a$, $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$, $\int_a^b cf(x) dx = c \int_a^b f(x) dx$, $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$. Interpret these geometrically.

- 12. Consider the following comparison test: if $f(x) \leq g(x)$ and $a \leq b$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$. Interpret this geometrically. What does this mean if f or g is constant 0? What does this mean if f or g is a constant? (These are some useful consequences.)
- 13. Fundamental Theorem of Calculus 1. If f is continuous on [a, b], then $F(x) = \int_a^x f(t) dt$ is an antiderivative of f. (In other words, antiderivatives always exist, and you can get at least one from the definite integral.)
- 14. Fundamental Theorem of Calculus 2. If f is continuous on [a, b] and F is an antiderivative of f, then $\int_a^b f(x) dx = F(b) F(a)$. (In other words, any antiderivative will do to compute a definite integral.) We sometimes write F(b) F(a) as $[F(x)]_a^b$ or just $F(x)]_a^b$.
- 15. Come up with and solve a problem involving the derivative of a function of x defined by a definite integral whose bounds are themselves functions of x. (In general, if $y = \int_{g(x)}^{h(x)} f(t) dt$ and if F is some arbitrary antiderivative of f, then y = F(h(x)) F(g(x)), so y' = f(h(x))h'(x) f(g(x))g'(x), by the chain rule.)
- 16. Because of FTC1, we write the "indefinite integral" $\int f(x) dx$ for the antiderivatives of f. Why is "antiderivatives" plural? How do you account for it when computing an indefinite integral?
- 17. Net change theorem. $f(b) = f(a) + \int_a^b f'(x) dx$. Why is this true? Come up with physical examples of this theorem.
- 18. The substitution rule ("u-substitution"). If u = g(x) is a differentiable function, then $\int f(g(x))g'(x) dx = \int f(u) du$. If g is one-to-one, then $\int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$. In practice, this means computing the implicit derivative du = g'(x) dx and getting rid of x and dx by replacing dx with du/g'(x) and replacing all resulting g(x) with u. A trickier example is $\int_1^2 t^3 \sqrt{t^2 1} dt$ (hint: t^3 is $t \cdot t^2$). A less tricky example is $\int \tan x dx$ (hint: \tan is a quotient).
- 19. Integrals $\int_{-a}^{a} f(t) dt$ of odd or even continuous f.
- 20. If $f(x) \ge g(x)$ for all x in [a, b], what is the area between the curves on that interval as an integral? What if f and g cross?