Quiz 8

1. (5 points). Compute the derivative of $H(z) = \ln \sqrt{\frac{a^2 - z^2}{\sigma^2 + z^2}}$ $\frac{a^2-z^2}{a^2+z^2}$.

By using rules for logarithms, we may rewrite H as

$$
H(z) = \ln \sqrt{\frac{a^2 - z^2}{a^2 + z^2}}
$$

= $\frac{1}{2}$ ln $\left(\frac{a^2 - z^2}{a^2 + z^2}\right)$
= $\frac{1}{2} \left(\ln(a^2 - z^2) - \ln(a^2 + z^2)\right)$.

With this, it becomes easy to compute the derivative:

$$
H'(z) = \frac{1}{2} \left(\frac{-2z}{a^2 - z^2} - \frac{2z}{a^2 + z^2} \right)
$$

=
$$
\frac{-z(a^2 + z^2) - z(a^2 - z^2)}{a^4 - z^4}
$$

=
$$
\frac{-2a^2z}{a^4 - z^4}.
$$

Note that H is a function of z and z only (which is why it is written $H(z)$). That is, a is a constant.

It is also possible to compute the derivative directly using the chain rule, however it takes more work to simplify the result.

2. (5 points). Compute the derivative of $f(x) = (x^2 - 1)^{\sin x}$.

This function has an exponential with a base and exponent which are both varying with x , so our normal methods do not apply. There are two ways to compute this derivative (both substantially the same). The first is by logarithmic differentiation. Write $y = (x^2 - 1)^{\sin x}$ and take the logarithm of both sides to obtain $\ln y = \sin(x) \ln(x^2 - 1)$. Then, we implicitly differentiate each side,

$$
\frac{1}{y}\frac{dy}{dx} = \sin(x)\frac{2x}{x^2 - 1} + \cos(x)\ln(x^2 - 1),
$$

and multiply by y to solve for $\frac{dy}{dx}$.

$$
\frac{dy}{dx} = \left(\frac{2x\sin(x)}{x^2 - 1} + \cos(x)\ln(x^2 - 1)\right)\sin(x)\ln(x^2 - 1).
$$

Alternatively, we may realize that $(x^2 - 1)^{\sin x} = e^{\sin(x)\ln(x^2 - 1)}$ and proceed by using the chain rule followed by the product rule.

3. (5 points). Boyle's Law for an ideal gas at constant temperature with pressure P and volume V is $PV = C$, where C is some positive constant. Our gas has $C = 104 \text{ kPa} \cdot \text{m}^3$. Suppose at $t = 10$ s, $V = 2$ m³, $P = 52$ kPa, and $\frac{dV}{dt} = -\frac{1}{2}$ m³/s. What is $\frac{dP}{dt}$ at this time?

We want to find $\frac{dP}{dt}$, so therefore we must take the derivative of some relation involving P. The only relation we have is $PV = C$, so let us take the derivative with respect to t, recognizing that C is a constant:

$$
P\frac{dV}{dt} + \frac{dP}{dt}V = 0.
$$

Then we may substitute values we know:

$$
52 \cdot \left(-\frac{1}{2}\right) + \frac{dP}{dt} \cdot 2 = 0,
$$

and therefore $\frac{dP}{dt} = \frac{52}{2 \cdot 2} = 13 \text{ kPa/s}.$

Extra credit. (2 points). Suppose $y(x)$ is a function satisfying $xy'' + y' + xy = 0$ for all values x, and $y(0) = 1$. Find $y'(0)$ and $y''(0)$. (This y is called a Bessel function of order 0).

Substitute $x = 0$, and then we have $0 \cdot y''(0) + y'(0) + 0 \cdot y(0) = 0$, and so $y'(0) = 0$. Take the implicit derivative with respect to x to get $(xy''' + y'') + y'' + (xy' + y) = 0$, into which we substitute $x = 0$ to get $0 \cdot y'''(0) + 2y''(0) + 0 \cdot y'(0) + y(0) = 0$, which means $2y''(0) + 1 = 0$, and therefore $y''(0) = -\frac{1}{2}$ $\frac{1}{2}$.