Quiz 7

1. (5 points). Find the derivative of $f(t) = e^{t \sin 2t}$.

We compute the derivative as follows:

$$\frac{d}{dt} f(t) = \frac{d}{dt} e^{t \sin 2t}$$

$$= e^{t \sin 2t} \left(\frac{d}{dt} t \sin 2t \right) \qquad (\text{chain rule})$$

$$= e^{t \sin 2t} \left(t \left(\frac{d}{dt} \sin 2t \right) + \left(\frac{d}{dt} t \right) \sin 2t \right) \qquad (\text{product rule})$$

$$= e^{t \sin 2t} \left(t \cos(2t) \left(\frac{d}{dt} 2t \right) + 1 \cdot \sin 2t \right) \qquad (\text{chain rule})$$

$$= e^{t \sin 2t} \left(t \cos(2t) \cdot 2 + \sin 2t \right).$$

Thus, the derivative is $(2t\cos 2t + \sin 2t)e^{t\sin 2t}$.

2. (5 points). For the curve $x^2 + xy + y^2 = 7$, find an equation of the tangent line at the point (2, 1).

We compute the implicit derivative so that we have the slope at that point by taking d of each side:

$$d(x^{2} + xy + y^{2}) = d(7)$$

$$d(x^{2}) + d(xy) + d(y^{2}) = 0$$

$$2x \, dx + x \, dy + y \, dx + 2y \, dy = 0$$

$$(2x + y) dx + (x + 2y) dy = 0.$$

Putting in (x, y) = (2, 1), we have

$$5\,dx + 4\,dy = 0$$

hence $\frac{dy}{dx} = -\frac{5}{4}$. Using point-slope form, we have the following equation for the tangent line:

$$y - 1 = -\frac{5}{4}(x - 2).$$

3. (5 points). Estimate $\sqrt[3]{29}$ by a linear approximation (i.e., by using a tangent line at 27).

In this solution, we will go over the reasoning behind linear approximation; it can be solved much more quickly in practice.

The derivative of $\sqrt[3]{x} = x^{1/3}$ is $\frac{1}{3x^{2/3}}$. Recall that the definition of the derivative is:

$$\lim_{x \to 27} \frac{\sqrt[3]{x} - \sqrt[3]{27}}{x - 27} = \frac{1}{3(27)^{2/3}} = \frac{1}{27}.$$

For every $\varepsilon > 0$, there is a $\delta > 0$ such that any x within δ of 27 makes the expression inside the limit within ε of 1/27. So, if ε is small enough, we can remove the limit and replace = with \approx , for x within δ of 27:

$$\frac{\sqrt[3]{x} - \sqrt[3]{27}}{x - 27} \approx \frac{1}{27}$$

Multiplying by x - 27, we essentially obtain a tangent line:

$$\sqrt[3]{x} - \sqrt[3]{27} \approx \frac{1}{27}(x - 27).$$

(In particular, the tangent line at 27 is $y - 3 = \frac{1}{27}(x - 27)$.)

We would like an approximation of $\sqrt[3]{29}$, so let x = 29. Then, we obtain $\sqrt[3]{29} \approx \sqrt[3]{27} + \frac{1}{27}(29 - 27) = 3 + \frac{2}{27}$ as the approximation, which correct to two parts in a thousand.

Why did we do the tangent line at 27? It is because we can easily compute $\sqrt[3]{27}$, and it is the closest cube to 29.

Extra credit. (2 points). A tangent line of $h(x) = \frac{1}{x}$ meets the x- and y-axes to form a triangle. Find the area of such triangles.

Since $h'(x) = -\frac{1}{x^2}$, the tangent line at $(a, \frac{1}{a})$ is

$$y-\frac{1}{a}=-\frac{1}{a^2}(x-a).$$

By some manipulation, we obtain $\frac{x}{a} + ay = 2$. This form makes it easy to compute the *x*-intercept as 2a and the *y*-intercept as $\frac{2}{a}$. The area of the triangle bounded by the axes and the tangent line is $\frac{1}{2}(2a)(\frac{2}{a}) = 2$. Always 2.