
MATH 1A. September 24, 2014. (15 minutes) SOLUTIONS

Quiz 4

1. (5 points). Compute the limit lim
x→0

(3ex + 2(x + 3)). You may assume the exponential

function is continuous everywhere.

Since ex is continuous, limx→0 e
x = e0 = 1. So, by the product and addition rules,

limx→0(3e
x + 2(x+ 3)) = 3e0 + 2(0 + 3) = 3 · 1 + 6 = 9.

2. (5 points). Find the largest δ such that, whenever x satisfies 0 < |x−2| < δ, | 1
x3 − 1

23
| < 1.

The theory underlying this problem is that limx→2
1
x3 = 1

23
. We are given ε = 1, and it is

our job to find the largest δ, where the inequalities come from the definition of the limit.
It is easiest to graph y = 1

x3 and follow the techniques we have done in class. Instead,
we will do it entirely algebraically here. The second inequality is equivalent to the following
two inequalities:

1

x3
− 1

23
< 1

1

x3
− 1

23
> −1,

which can be simplified to

1

x3
<

9

8

1

x3
> −7

8

x >
3

√
9

8
x < − 3

√
7

8

(the inequalities flip because we took the reciprocal). The second inequality is irrelevant
because 1

x3 is undefined at x = 0, and we are only concerned with values of 1
x3 near x = 2.

Since we are left only with the inequality x > 3

√
9
8
, so 2 − x < 2 − 3

√
9
8
, which, since both

2− x and 2− 3

√
9
8

are positive, gives |x− 2| < 2− 3

√
9
8

(using |x− 2| = |2− x|). Hence, we

may select δ = 2− 3

√
9
8
, which is the largest possible δ by construction.

The drawing-a-graph method, though, is probably less error-prone than doing it purely
algebraically.

3. (5 points). Let m and b be real numbers such that m 6= 0. Prove that lim
x→a

(mx+ b) exists

for all a, using the definition of the limit.

First, using what we know about limits, we would expect limx→a(mx + b) = ma + b.
We need to prove this. Importantly, we must recall what it means for this limit to exist
with this value: For all ε > 0, there exists some δ > 0 such that whenever any x satisfies
0 < |x− a| < δ, we have |(mx+ b)− (ma+ b)| < ε. Let us derive a δ before actually writing
the proof. Notice the conclusion can be simplified to |m||x − a| < ε, so if |x − a| < ε

|m| , we
are good, so we will use this for our δ. Now, this was all derivation; we must write a proof:

Let ε > 0, and let δ = ε
|m| . Suppose x satisfies 0 < |x−a| < δ. Then, |(mx+b)−(ma+b)| =

|m||x− a| < |m| · ε
|m| = ε. Since ε was arbitrary, we conclude limx→a(mx+ b) = ma+ b.
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Extra credit. (2 points). Prove from the definition of the limit that f(x) =
√
x is continuous

at all x > 0.

For this, we observe |
√
x−
√
a||
√
x+
√
a| = |x− a|.

Let ε > 0, and let δ = ε
√
a. Suppose x satisfies 0 < |x− a| < δ. Then

|
√
x−
√
a| = |x− a|√

x+
√
a

≤ |x− a|√
a

(since
√
x+
√
a ≥
√
a)

<
ε
√
a√
a

= ε.

Therefore, since ε was arbitrary, we see limx→a

√
x =
√
a, and since this argument works for

all a > 0,
√
x is continuous on the interval (0,∞).

Note that the argument breaks down when a = 0: δ = ε
√

0 = 0, but the definition of the
limit requires δ > 0. Also,

√
x is not defined for negative numbers, so a limit cannot exist

at 0 anyway (though the right-sided limit does, so by Stewart, we say
√
x is continuous on

the interval [0,∞)).


