Review for Math 1A Final

December 10, 2014

Kyle Miller https://math.berkeley.edu/~kmill/math1afa2014

Make sure to study the topics in "One-Minute Quickes for Midterm 1" and "Review for Midterm 2" as well.

- 1. Derive Newton's Method (by finding the x-intercept of the tangent line at a point $(x_i, f(x_i))$).
- 2. Define an antiderivative of a function. Prove that the difference between two antiderivatives on an interval is a constant (hence, if F(x) is an antiderivative of f, then every antiderivative is of the form F(x) + C with C a constant).
- 3. Remember an antiderivative for each of the following functions of x, where F, G are antiderivatives of f, g, respectively: x^n $(n \neq -1)$, 1/x, cf(x), f(x) + g(x), e^x , $\cos x$, $\sin x$, $\sec^2 x$, $\sec x \tan x$, $1/\sqrt{1-x^2}$, $1/(1+x^2)$.
- 4. Write down the definition of the Riemann definite integral $\int_a^b f(t) dt$ of a continuous function f from a to b. Interpret the parts of the definition intuitively as areas of rectangles. Be aware of left- and right- Riemann integral formulations (though in the limit they give the same result).
- 5. Find the area between $y = \sin x$ and y = 0 on $[0, 2\pi]$. Make sure the areas are positive.
- 6. If you can stomache it, compute the definite integral $\int_0^3 (x^2 + x + 1) dx$ from the definition of the definite integral. You will need the sum formulas 5,6,7 on page 374.
- 7. Remember the following properties: $\int_a^b dx = b a$, $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$, $\int_a^b cf(x) dx = c \int_a^b f(x) dx$, $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$. Interpret these geometrically.
- 8. Consider the following comparison test: if $f(x) \leq g(x)$ and $a \leq b$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$. Interpret this geometrically. What does this mean if f or g is constant 0? What does this mean if f or g is a constant? (These are example useful consequences.)
- 9. Fundamental Theorem of Calculus 1. If f is continuous on [a, b], then $F(x) = \int_a^x f(t) dt$ is an antiderivative of f. (In other words, antiderivatives always exist, and you can get at least one from the definite integral.)
- 10. Fundamental Theorem of Calculus 2. If f is continuous on [a,b] and F is an antiderivative of f, then $\int_a^b f(x) dx = F(b) F(a)$. (In other words, any antiderivative will do to compute a definite integral.) We sometimes write F(b) F(a) as $[F(x)]_a^b$ or just $F(x)]_a^b$.
- 11. Come up with and solve a problem involving the derivative of a function of x defined by a definite integral whose bounds are themselves functions of x.
- 12. Because of FTC1, we write $\int f(x) dx$ for the antiderivatives of f.
- 13. Net change theorem. $f(b) = f(a) + \int_a^b f'(x) dx$. Why is this true? Come up with physical examples of this theorem.

- 14. The substitution rule ("u-substitution"). If u = g(x) is a differentiable function, then $\int_a^b f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$. In practice, this means computing the implicit derivative $du = g'(x) \, dx$ and getting rid of x and dx by replacing dx with du/g'(x) and replacing all resulting g(x) with u. A trickier example is $\int_1^2 t^3 \sqrt{t^2 1} \, dt$ (hint: t^3 is $t \cdot t^2$). A less tricky example is $\int_1^2 \tan x \, dx$.
- 15. Integrals $\int_{-a}^{a} f(t) dt$ of odd or even continuous f.
- 16. If $f(x) \ge g(x)$ for all x in [a, b], the area between the curves on that interval as an integral. Now the area between f and g if they may cross.
- 17. Interpretation of volume as a sum of thin elements (prisms, cylinders, "washers," "cylindrical shells").
- 18. How to compute the volume of revolution by both washers $(\pi(R(x)^2 r(x)^2) dx)$ and cylindrical shells $(2\pi r(x)h(x) dx)$. (Note: there are some instances where, though one may be able to set up the volume as an integral by either method, only one has a computable antiderivative. Moral: be able to set up volumes both ways.) Be able to derive these volume elements from scratch, at least intuitively.