THE HOMOLOGICAL ARROW POLYNOMIAL FOR VIRTUAL LINKS

KYLE A. MILLER

AsstrACT. The arrow polynomial is an invariant of framed oriented virtual links that generalizes
the virtual Kauffman bracket. In this paper we define the homological arrow polynomial, which gen-
eralizes the arrow polyomial to framed oriented virtual links with labeled components. The key
observation is that, given a link in a thickened surface, the homology class of the link defines a func-
tional on the surface’s skein module, and this gives an invariant of the link itself by applying it to the
image of the link in the skein module — this is the arrow polynomial.

We give a graphical calculus for the homological arrow polynomial by introducing labeled “whiskers”
to the usual diagrams for the Kauffman bracket, recording intersection numbers with each labeled
component of the link.

We use the homological arrow polynomial to study (Z/nZ)-nullhomologous virtual links and
checkerboard colorability, completing Imabeppu’s characterization of checkerboard colorability of
virtual links with up to four crossings. We also prove a version of the Kauffman-Murasugi-Thistlethwaite
theorem that the breadth of the homological arrow polynomial for an “h-reduced” diagram is four
times the difference between the crossing number and the genus of the diagram.
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sec:introduction

A surface link is a link L in the interior of a thickened surface ¥ x I up to isotopy, where ¥ is a
compact oriented surface, possibly with nonempty boundary. Given a compact subsurface ¥’ C ¥,
then the surface link L C ¥’ x I is called a destabilization of L C ¥ x I. A virtual link is an equiv-
alence class of surface links modulo destabilization [CKS02, Kup03]. Combinatorially, a virtual
link can be given as a virtual link diagram, which is a ribbon graph where every vertex has degree
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2 KYLE A. MILLER

Ficure 1. Reidemeister moves for framed surface links. fig:framed-reidemeister

2 or 4, where the degree-4 vertices have a marked pair of opposite half-edges corresponding to
the overstrand of a crossing. Virtual link diagrams are usually immersed in the plane, and double
points — artefacts of non-planarity — are called virtual crossings. Such diagrams up to the clas-
sical Reidemeister moves and detour moves (re-immersions of the ribbon graph) generate virtual
equivalence [Kau99].

A framed surface link is a surface link L C ¥ x I along with an extension to an embedding of
L x I (not respecting the product structure of ¥ x I) up to isotopy. By extension, a framed (or flat)
virtual link is an equivalence class of framed surface links modulo destabilization. Diagrammat-
ically, the framing annuli are assumed to lie parallel to the plane, and the only change is that the
Reidemeister I move is replaced by the Reidemeister I' move for regular isotopy (see Figure 1).

Discovered independently by Dye-Kauffman [DK09] and Miyazawa [Miy06, Miy08], the arrow
polynomial is an invariant of oriented framed virtual links that takes values in Z[A*!,K},K,,...].
In the Dye-Kauffman formulation, the Kauffman bracket is modified to make use of the orienta-
tion of the virtual link by introducing cusps in the B-smoothing (see Figure 2). The evaluation
of a fully resolved state as an element of the polynomial ring is from counting cusps after cusp
cancelation rules. To explain this process we use the Miyazawa formulation. First, replace the
cusps with vertex orientations according to Figure 3; these are local orientations at a degree-2
vertex labeled by an integer. Second, reduce the vertex orientations according to Figure 4, leav-
ing a single vertex orientation along each component of the state. Third, evaluate the state as
(A2 = A72)2) "1 cs Kjn(cyy2, where by(S) is the number of components in the state S, C ranges
over components of the state, n(C) is the label of the sole vertex orientation along that component
(which is always even, as we will come to see), and Ky = 1. Hence, the arrow polynomial is given
by

(11) <L>A — ZALI(S)_I?(S)(_AZ _A—2)b0(5)_1 rl K|n(C)|/27
S CcS

where a(S) and b(S) denote the number of A-smoothings and B-smoothings in state S.

For virtual links in general, Dye and Kauffman define the writhe-normalized arrow polynomial
(L)ya = (—A3)~WrN(L), where the writhe is the sum of the signs of the crossings of the virtual
link diagram. Said another way, the writhe-normalized arrow polynomial is the arrow polynomial
of a writhe-0 representative in the equivalence class of framed virtual links modulo the usual
Reidemeister I move. One might define the arrow version of the virtual Jones polynomial by
substituting t = A™* in (L)y4. The usual virtual Jones polynomial, then, is from additionally
setting K, = 1 for all n.
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Ficure 2. Crossing resolutions for the Dye—Kauffman arrow bracket, which intro-
duce cusps.
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fig:arrow-bracket-1
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Ficure 3. Graphical notation for cusps.

fig:arrow-bracket-cusps

FiGure 4. Cusp reduction rules using labeled vertex orientations., ... sp-rea.

iction

In this paper, we give a formulation of the arrow polynomial from a homological point of view,
similar in flavor to Turaev’s two-variable extension of the Jones polynomial to knotoids [Tur]. This
makes certain known observations about the arrow polynomial transparent while also giving a
straightforward extension to virtual links in a way that distinguishes components.

While it is true a virtual link is represented as a surface link and so we may consider that link as
an element in the Kauffman bracket skein module for the thickened surface, to get a polynomial
invariant we need some linear functional on the skein module that is invariant under stabilization
— this includes the action of the mapping class group. The basic idea is that the components of
the surface link itself may be used as a marking to construct such a functional, and this leads to
our virtual link invariant, where the one-component version of which is equivalent to the arrow
polynomial.

When referring to virtual knots, we use Jeremy Green’s census [Gre04]. For identification of
virtual knots, we use the online software Virtual KnotFolio [Mil20].

2. THE HOMOLOGICAL ARROW POLYNOMIAL

We will first consider framed oriented surface links in a fixed thickened surface ¥ x I, define a
functional on the skein module of ¥ xI, and then show the result is an invariant under stabilization
of the surface and hence of the corresponding virtual link.

The Kauffman bracket skein module Sk(M) for a 3-manifold M consists of Z[A*!]-linear com-
binations of framed unoriented links in M, called skeins, modulo the relations for the Kauffman
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4 KYLE A. MILLER

Ko (o

LILO = (A-AY)L

In the second relation, the unknot bounds a disk in M disjoint from L. The skein module Sk(¥) :=
Sk(X xI) has a Z[A*!]-algebra structure, where the multiplication operation is from including the
first skein in ¥ x [%, 1] and the second in ¥ x [0, %] See [Prz].

Consider the ring H(Y) = Z[Ail][Xiy :y € Hi(2)]/(Xp = 1), where the +y indicates that the
variables are associated to unoriented homology classes — note that we may restrict this to those
y that are represented by simple closed curves in what follows.

bracket:

"

Lemma 2.1. The ring H(X) has a well-defined structure of a Sk(X)-module such that simple closed
curves C C ¥ act by scaling by (—A? —A‘Z)Xi[c], where +[C] is the unoriented homology class of C.

Proof. Given a framed link diagram L in ¥, then by applying the Kauffman bracket skein relation
one can represent its value in Sk(X x I) as a linear combination of simple skeins, which are disjoint
unions of simple closed curves in ¥ x {1/2}, and as usual the decomposition into simple skeins is
given by a state sum. The hypothesized module structure extends to L by the following state sum
that gives the multiplicative factor for the action:

Casstatppy I Z ATSIS) (A2 _ A=2y0olS) Hxi[c],
S CeS

where the sum ranges over states for L. What remains is to show this multiplicative factor is
invariant under the framed Reidemeister moves (Figure 1). Note that in the above state sum,
nullhomologous C € S have +[C] = 0 and hence evaluate to —A? — A=2. Thus, the usual check that
the Kauffman bracket is invariant under framed Reidemeister moves carries over to this new state
sum, and we are done. OJ

With this Sk(X)-module in hand, we get a framed oriented surface link invariant, which is the
amount by which it scales H(X). In particular, the invariant is given by Equation (2.1). This
invariant is very similar to the surface bracket polynomial in [DK], however we expand homology
classes multiplicatively in the additional variables.

Given homology classes Ay,..., A, € H{(X), there is a homomorphism & : H(X) — Z" defined
by a — (A -a,..., A, - @) where ;- a is the algebraic intersection number whose value lies in
Hy(X) = Z. The case we are interested in is from an oriented link L with components labeled by
elements of {1,2,...,n}, allowing different components to have the same label. We may regard a
labeling as a disjoint union L = Ly LI---LL,, with L; consisting of those components of L with label
i, if any. Then, with A; = [1t(L;)] for each i, we define hy : H{(X) — Z" as above, where t: X xI — X
is the canonical projection.

For an unoriented simple closed curve C C X, we may associate to it +h;(C) € +Z" by giving it
an arbitrary orientation. One may imagine L as defining an abelian covering space of ¥, and then
+h; (C) represents the absolute offset between the endpoints of C lifted to a path in that covering
space.

Let R, = Z[A*'][X,; : I € Z" and I # 0]; in the case all components of L are labeled by 1 (that is,
if L is 1-labeled), then R, = Z[A*!, X, X,,...]. There is a ring homomorphism H(X) — R, given by
X4ic) P Xan,(c), and with this we define a Z[A*']-linear map hp: Sk(X) > R, by considering the
multiplicative factor of the skein’s action on H and then mapping this to R,. This has a state sum

DRAFT 2020/11/15 14:17:45



THE HOMOLOGICAL ARROW POLYNOMIAL FOR VIRTUAL LINKS 5

given by

{EQZSzzm.aﬁﬁ EL(S) — (—A2 _A—Z)bo(s) ]_[XihL(C)’
CeS
where C ranges over the components of the simple skein S, and where X, = 1.

Definition 2.2. Given an oriented framed surface link L in a thickened surface ¥ x I with compo-
nents labeled from {1, 2,...,n}, the homological arrow polynomial is A(L) = hi(L) €R,,.

If L is an unframed oriented surface link, then (~A3)~"WrDp (L) is the normalized homological
arrow polynomial.

The following proposition is a special case of the fact that the homological arrow polynomial of
a labeled oriented framed surface link determines the homological arrow polynomial of the link
obtained by relabeling all of the components of a given label.

Proposition 2.3. If L is a framed surface link with components labeled from {1,2,...,n}, then by taking
A(L) and substituting X; = Xy . for each 1 € Z", the resulting polynomial in Ry is the homological
arrow polynomial for L with all components relabeled by 1.

thm:h-evenness
Lemma 2.4. For L a 1-labeled framed oriented surface link with a given framed diagram and for C a
component of a state of L, then hy(C) is even.

Proof. In the diagram for L, since L is oriented there is a well-defined right-handed pushoff, which
can be thought of as being obtained by walking along the link in the link’s orientation with one’s
right hand extended and tracing the path taken. Then, for the state curves, we will smooth the
pushed-off version of L.

When smoothing a crossing, let us keep track of the local contribution to algebraic intersection
number by drawing whiskers, which are small rays from L indicating the orientation of L where L
intersects the state curves:

f\ Al

After orienting the state curves, the algebraic intersection number between L and a state curve C
is the difference between the numbers of “left” whiskers and of “right” whiskers, from the point
of view of someone taking a walk along C in the direction of its orientation. We can add an
additional structure (similar to the “decorated magnetic virtual graphs” of [Miy08]) in the form
of assigning orientations to each whisker-bound portion of the state curves:

X =%

We immediately see each component of a state has an even number of whiskers due to the alter-
nating arc orientations. O

Lemma 2.5. The homological arrow polynomial is an invariant of framed virtual links.

Proof. Consider a labeled framed oriented surface link L in ¥ x I, and suppose ¥ C X’ for £’ a
compact oriented surface. The algebraic intersection numbers in ¥ are the same as those in ¥/,
hence the homological arrow polynomials for L in ¥ x I and in X’ x I are the same. Hence, the
polynomial is invariant under destabilization and therefore is a framed virtual link invariant. [
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6 KYLE A. MILLER

Remark 2.6. For computing the homological arrow polynomial of framed virtual links with com-
ponents labeled from {1,2,...,n}, the idea of whiskers from the proof of Lemma 2.4 can be modi-
fied by labeling each whisker by the label of the component of L that intersects there:

D IGLP
=Ry (enX

In the state sum’s product, for a given component of the state, oriented arbitrarily, let m; be the
difference between the numbers of “left” whiskers and “right” whiskers of label 7, and then one as-
sociates to that component the variable X, ,,, . m ). For the n =1 case, an algorithm for computing
the arrow polynomial in this way (in consideration of Theorem 2.7) is given in Appendix A.

thm:arrow-poly-from-homol
Theorem 2.7. Given a 1-labeled framed surface link L, then the Dye—Kauffman arrow polynomial and
the homological arrow polynomial satisfy

(—A? = A7) L)a = A(L)lx, =K, for all i > 17

where the division by two is justified by Lemma 2.4.

Ll

1

Proof. The Dye-Kauffman arrow polynomial is from expanding crossings according to Figure 2
then reducing cusps according to the following two rules:

AN e

As a state sum,

(Da= Y AT A2 420 [ ] Ky
S CcS

where y(C) is the number of cusps in component C after cusp reduction. This is an even number
in consideration of the alternating arc orientations. After reduction, a component consists of a
sequence of pairs of cusps of the following form:

//\/,, 'Y _\/A\
If we associate whiskers to cusps in the following manner,
A & /-‘\
v > \|/
then we can see that the difference between “left” and “right” whiskers gives the total number of

cusps after cusp reduction. This completes the verification. O
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THE HOMOLOGICAL ARROW POLYNOMIAL FOR VIRTUAL LINKS 7

Example 2.8. The right-handed virtual Hopf link with components labeled by 1 and 2 has homo-
logical arrow polynomial (A% - A72)(AX; _; +A71 Xy ;)

(@)~ (D

= AR+ A (AR X

Hence, if each component is labeled by 1 the corresponding polynomial is (~A? - A~2)(A+ A7 X;)
and thus the arrow polynomial is A + A7'K;.

1l

3. PROPERTIES

sec:properties

3.1. Basic properties.

Proposition 3.1. If L and L’ are framed oriented virtual links each labeled from the same set {1, 2,...,n},
then

A(LUL) = A(L)A(L).

A virtual link L is called a connect sum if there is a representative surface link L C ¥ xI and a
properly embedded annulus A C ¥ x I that meets both components of ¥ x dI such that A separates
Y x I, A meets L transversely, and [LN A| = 2. A connect sum has a diagram D in a surface ¥ such
that there is a separating circle C C ¥ avoiding the crossings of D that intersects the arcs of D
transversely in two points. This circle represents ¥ as a connect sum X; # X,, and by cutting D
apart along C, putting the respective pieces on ¥; and X;, and connecting the endpoints of the cut
arcs by trivial arcs, one obtains two surface link diagrams D, and D, in ¥; and ¥,, respectively. If
L; and L, are the respective corresponding virtual links, then we say L = L; #L,. While the connect
sum of two oriented knots is a well-defined operation, this is not the case for virtual knots. The
notation is only meant to signify that these three virtual links stand in this relation.

Proposition 3.2. If L is a 1-labeled framed oriented virtual link that is a connect sum L = Ly # L,, then

(~A% = A7) A(L) = A(Ly)A(Ly).
thm:orientation-reversal
Proposition 3.3. If L is a labeled framed oriented virtual link and r;L is L but with all components
having label i given reversed orientation, then A(r;L) = A(L)|X+1HX+r.z' where r;(my,...,m;,...,m,) =

(my,...,—mj,...,my).

Proof. By reversing the orientation of all components of a particular label, in the state sum the
whiskers of that label are all reflected over their respective component. Hence, the roles of “left”
and “right” whiskers are reversed in the difference, so that label’s count is negated. O

The following corollary is [DK09, Theorem 1.1].
Corollary 3.4. If L is a 1-labeled framed virtual link, then A(L) is independent of the orientation of L.
Proposition 3.5. If L is a labeled framed oriented virtual link and L’ is its mirror image, then

A(L) = A(L)

|A»—>A‘1 ’
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8 KYLE A. MILLER

Ficure 5. The virtual knot 4.55, known as Kishino’s knot. Fig:kishino

sec:genus-bounds
3.2. Genus bounds. For a labeled framed oriented surface link L € ¥ x I, the homological arrow
polynomial A(L) consists of terms of the form pX,; --- X, forpe Z[A*'] and I; € Z" nonzero for
all 1 <i <k, allowing duplicate factors. Each X,; comes from a loop in a state of the state sum,
and since I; # 0, it corresponds to a non-separating loop in X.

For homological reasons, if +I; # +I;, then the loops for I; and I; must not be isotopic. If the
genus g(X) is at most 1, then the maximum number of nonseparating pairwise non-isotopic dis-
joint loops is g(X). For g(¥) > 2, then a pants decomposition gives an upper bound of 3g(X) — 3 of
nonseparating pairwise non-isotopic disjoint loops. Thus, we may generalize the [DK09, Theorem
4.5] genus bound to use the homological arrow polynomial in the following theorem.

thm: genus-bound
Theorem 3.6. Let L € X xI be a labeled framed oriented surface link with ¥ closed, and let pX,p, -+ X,p,
be a term of A(L), where p € Z[A*'] and I; € Z" nonzero for all 1 < i < k. If m is the number of pairwise
distinct indices (that is, m = [{+I; : 1 <i < k}|), then either (1) g(X)>mifg(X)<1or(2) g(X) > %m+1
ifg(X)>2.

thm: genus-bound-virt
Corollary 3.7. Let m be the number of pairwise distinct indices in the X,y variables of a term of the
homological arrow polynomial of a labeled framed oriented virtual link L. If m is 0 or 1, then m is a
lower bound for the virtual genus of L. Otherwise, if m > 2, then [%m + 17 gives a lower bound for the
virtual genus of L.

Remark 3.8. Given any collection of nonseparating pairwise non-isotopic disjoint loops in a closed
oriented surface, there exists an immersed loop whose algebraic intersection number with each
of these loops is nonzero and even. Hence, we do not expect the 3g — 3 bound to be improved
except perhaps by considering the whole set of m numbers for every term in the homological
arrow polynomial.

3.2.1. Kishino’s knot. The virtual knot 4.55 (see Figure 5) is known to have a trivial Jones polyno-
mial and a non-trivial arrow polynomial:

(Kyssina = At +1+ A7 = (A% + 2+ A7HK] + 2K,

By Corollary 3.7, we see the virtual genus of Kishino’s knot is at least 1 (hence is definitely not
a classical knot). The diagram for Kishino’s knot can be drawn on a surface of genus 2. In Sec-
tions 3.5 and 4, we discuss the n-cabled arrow polynomial, which is the arrow polynomial of an
n-cabling of a given virtual link. The n-cable of a virtual link has the same virtual genus. We
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calculate the 2-cabled arrow polynomial of Kishino’s knot to be, with the substitution A = t~1/4,

—t9/2 + t7/2 + 7t5/2 + 15t3/2 + 19t1/2 + 19t—1/2 + 15t—3/2 + 7t_5/2 + t_7/2 _ t—9/2

n Kz(_%l/z _ 2t‘1/2) n K32(—2t5/2 4432 _pl/2 _ /2 _gy3/2 2t‘5/2)
+ K22(t9/2 72 _65/2 10432 _ 14412 _1447V2 _ 10432 _ 452 _477/2 t‘9/2)
+ K2R, (2172 + 6132 4 8112 4+ 81712 4 61732 4 2175/2)
n K?(—tm 4452 _gp3/2 1 14V2 114V g2 _ 452 _ t—7/2)

+ K Ko K5(2t7% + 872 4 20132 + 34112 4 34172 4 204732 4 8t75/2 1 2+77/2)
+ Kf(—2t7/2 _ 8152 _ 1412 _ 1612 _1647V2 _ 1472 8472 _0477/2)

+ KZ2Ko (48772 + 22652 1 50632 1+ 68112 + 68172 4 506732 4 22472 + 4+77/2)

+ K2K2(=2t72 12652 = 32432 — 50112 — 50t V2 = 324732 _ 124752 _ 2477/2)

n Kf(—tm 7452 _9143/2 _3541/2 _35471/2 _ 91 473/2 _74=5/2 _ t‘7/2)

Since K; K;K3 appears, we get the genus lower bound of % -3+ 1 = 2 for Kishino’s knot. Therefore
the virtual genus is exactly 2. This fact was previously shown in [DK], where they analyzed state
curves of the Kauffman bracket expansion of Kishino’s knot in a representative genus-2 surface.

sec:crossing-number

3.3. Crossing number bounds. The crossing number c(L) of a surface link or virtual link L is the

minimal number of crossings over all diagrams of the link. For a virtual link, the virtual crossing

number v(L) is the minimal number of virtual crossings over all planar immersions of diagrams of
the virtual link.

The following proposition has not proved useful for determining the crossing number, since,

except for the unknot, no virtual knot in Green’s census gives an equality, and only 49 out of 2565
are only one off.

Proposition 3.9. Let L be a surface link, and let pX.;, --- Xy, be a term of A(L), where p € Z[A*!'] and
I; € Z" nonzero forall 1 <i <k. With s = Zle Z?:1|Iij|, then c¢(L) > %s.

Proof. Each crossing in the state sum introduces two whiskers. O

Corollary 3.10. If pK; ---K; is a term of the arrow polynomial (L)s of a virtual link L, where p €

Z[A*] and ij>1forall1<j<k, then c(L)> %(il + et ).

Conjecture 3.11. If the breadth of A(L) as a polynomial in A is 4c(L), then the breadth of (L) is 4c(L).
3.4. Nullhomologous virtual links.

Definition 3.12. For R a ring, an oriented surface link L C ¥ x I is R-nullhomologous if [L] = 0
in H{(X x I;R). An oriented virtual link is R-nullhomologous if it has a representative surface
link that is R-nullhomologous. We say a surface link or virtual link is nullhomologous if it is Z-
nullhomologous.

An important part of the theory of virtual links is Kuperberg’s characterization, Theorem 3.13.
For a thickened surface ¥ x I, a vertical annulus A C ¥ x I is a properly embedded annulus that is
isotopic to C x I for some simple closed curve C C X, and, for a given surface link L ¢ ¥ x I, such
an annulus is called essential if it does not bound a ball in ¥ xI —L. For a surface link L c ¥ xI and
a vertical annulus in the complement of A, there is a virtually equivalent surface link called the
destabilization of L C ¥ xI along A, described as follows. After an ambient isotopy we may assume
A = Cx1I, and, with v(C) being a tubular neighborhood of C in ¥ such that v(C) x I is disjoint
from L, then L € (¥ —v(C)) x I is a virtually equivalent surface link. Capping off each component
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10 KYLE A. MILLER

of d(X—v(C)) with a disk yields a closed surface ¥’, and L ¢ ¥’ x1 is the destabilization of L C ¥ x I
along A.
A spanning surface link L C ¥ x I is one where L meets each component of ¥ x I.

thm:what-is-virtual-link
Theorem 3.13 ([Kup03]). Given a virtual link L, there is a representative spanning surface link L C ¥xI
with X closed such that every vertical annulus in ¥ xI—L bounds a ball disjoint from L. This surface link
is unique up to both isotopy and transformations induced by orientation-preserving self-diffeomorphisms
of X.

Proof sketch. Given a disjoint union A of vertical annuli in ¥ xI — L, let the pruned destabilization
along A of L C ¥ x I be the result of destabilizing L ¢ ¥ x I along all the annuli in A and then
throwing away every component of the resulting thickened surface that does not meet L, yielding
a spanning surface link that is virtually equivalent to L C ¥ x L. An irreducible descendant of
L c ¥ xIis a pruned destabilization where every vertical annulus in the complement of L bounds
a ball disjoint from L. If there were a spanning surface link with multiple non-diffeomorphic
irreducible descendants, we could let L C ¥ x I be one with g(X) - by(X) + bg(L) € IN minimal.
Thus, the destabilization along any essential vertical annulus for this surface link has a unique
irreducible descendant.

The way the proof proceeds is to suppose there are nonempty disjoint unions .A; and A, of
essential vertical annuli in ¥xI whose pruned destabilizations have non-diffeomorphic irreducible
descendants that, when put in general position, intersect in the fewest number of curves. The
intersection is analyzed to show that either g(X)— by(X) + bo(L) was not minimal or that either
Aj or A, can be modified to have fewer components in the intersection without changing the
diffeomorphism class of its irreducible descendent.

Therefore, there is a unique irreducible descedant for every surface link and hence for each
virtual equivalence class. U

Proposition 3.14. If L is an R-nullhomologous oriented virtual link and L C ¥ x I is a genus-minimal
representative surface link with ¥ closed, then the surface link is R-nullhomologous.

Proof. Let L C X x I be a spanning surface link with X. If this is not the unique representative
from Theorem 3.13, then after an isotopy there is a finite collection C = C; UC, U---UC, C X of
disjoint simple closed curve such that the pruned destabilization along A = C x I gives the unique
representative L C X' x I.

Supposing L € ¥ x I is R-nullhomologous, there is some nonzero n € Z such that n[L] = 0
in Hy (X x I;Z). Hence, there is a 2-chain S € C,(X x I;ZZ) with dS = nL that, outside a regular
neighborhood of L, is an oriented embedded surface. We may assume S intersects .4 transversely
in a collection of simple closed curves. Considering S —v(C) C £’ x I, we may cap off the newly
formed boundary S N cl(v(C)) with disks in the capped-off region of ¥’ x I, forming S’ ¢ ¥/ x I
which, outside a regular neighborhood of L, is an oriented embedded surface. Thus, n[L] = 0 in
H (X' xI;Z), and therefore L C ¥’ x I is R-nullhomologous. O

Remark 3.15. It is not true that every representative surface link of an R-nullhomologous virtual
link is R-nullhomologous. For example, consider a homologically nontrivial simple closed curve
C in a closed oriented surface ¥.

Proposition 3.16. If L=L, U---LIL, is a labeled framed oriented virtual link with each L; nullhomol-
ogous, then A(L) € Z[A*!].

Proof. Since each L; is nullhomologous, the function hj is the constant-zero function, hence only
Xo =1 appears in the state sum. O

The following is a restatement of [DK09, Theorem 1.5] and [Miy08, Proposition 5.8] in terms of
the homological arrow polynomial.
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THE HOMOLOGICAL ARROW POLYNOMIAL FOR VIRTUAL LINKS 11

Ficure 6. The virtual knot 4.105, drawn on a torus so that it is obviously nullhomologous.,

Ficure 7. A nullhomologous virtual link.

fig:vlinkl
Corollary 3.17. If L is a classical link (that is, a surface link in S x I), then
A(L) = (-A? = AZXL),
where (L) is the Kauffman bracket.
Proof. H,(S?>xI;Z) = 0. a

Example 3.18. The virtual knot 4.105 has virtual genus 1 and is nullhomologous (see Figure 6),
hence we expect A(Ky 195) € Z[A*!]. Indeed:

A(Kyg105) = (A2 = A7H)(AP+1-A7H).

Example 3.19. The virtual link L in Figure 7, with the black component labeled by 1 and the blue
component labeled by 2 has

A(L) = (-A*-A7?) (‘A6 +AZ-2A72 4 (A + AT+ AT - ATIOXE )

We can see how its arrow polynomial is in Z[A*!] since X; _; — X, when relabeling the compo-
nents by 1. Thus, the homological arrow polynomial can sometimes detect non-classicality where
the arrow polynomial cannot. However, if we reverse the orientation of the blue component, the
corresponding arrow polynomial is

(La=-A°+A%—2472 4 (A2 + A2+ A0 - ATIOKT,

so the set of arrow polynomials of all orientations of the link components is able to detect non-
classicality.

Passing to Z/mZ coefficients with the algebraic intersection numbers, one obtains polynomials
Az/mz(L) € Z[A*][X,; : I € (Z/mZ)" and I # 0], which can be obtained by reducing the indices of
each X, in A(L) modulo m, setting X, = 1. If L is Z/mZ nullhomologous, then Ay,,,z(L) € Z[A*!].
In consideration of Lemma 2.4, this gives nothing for Z/2Z-nullhomologous links (and, in fact,
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Az7(L) = (A) if L is 1-labeled), however, for other moduli we can restrict the ring for A(L) as in
the following proposition.

Proposition 3.20. If L is a 1-labeled Z/mZ-nullhomologous virtual link, then
A(L) € Z[A*Y, X, Xoms X - - |-
If m is odd, then A(L) € Z[A*', X0, Xam» Xemy -+ |-

sec:checkerboard
3.5. Checkerboard colorability. A virtual link L is checkerboard colorable (introduced in [Kam02])
if it has a surface link representative L C ¥ xI such that the diagram for L in that surface is checker-
board colorable. As the following proposition shows, a virtual link is checkerboard colorable if
and only if it is Z/2Z-nullhomologous.

thm: checkerboard-z2

Proposition 3.21 ([BK, Proposition 1.7]). For a surface link L C ¥ x I, the following are equivalent:

(1) The link is checkerboard colorable.
(2) The link is the boundary of an unoriented spanning surface F C ¥ x 1.
(3) The link is Z/2Z-nullhomologous.

Proof. That (2) implies (3) is that F can be thought of as a 2-chain with Z/27Z coefficients, and the
converse is the standard construction of a spanning surface from a simplicial 2-chain with Z/2Z
coefficients.

The equivalence of (2) and (3) is from noting that ¥ x I deformation retracts onto X. Put L
into a position where the projection to ¥ is transverse with transverse double points, and let
C C X be the projection. If L is checkerboard colorable — that is, if the regions outside C can
be checkerboard colored — then the black regions of the coloring form a 2-chain in C,(X;Z/27Z)
whose boundary is C as an element of Cy(X;Z/2Z). Conversely, if [C] = 0 in H{(X;Z/27Z), then
there is a simplicial 2-chain in C,(X;Z/2Z) whose boundary is C, and the checkerboard coloring
comes from the coefficients of the 2-simplicies. O

One class of checkerboard colorable virtual links are those that are alternating.

Proposition 3.22 ([Kam02, Lemma 7]). If L is an alternating virtual link, then it is checkerboard
colorable.

Proof. Consider a diagram D for L on a closed oriented surface ¥ such that each region of ¥ — D is
a disk. For example, ¥ could be the surface from Theorem 3.13. By performing the A smoothing
of each crossing, one obtains a closed 1-manifold S, which, due to D being alternating, we may
assume lies in the boundary of a regular neighborhood of D. Hence, each component of S bounds a
disk and is thus nullhomologous. As S is Z/2Z-homologous to L, it follows from Proposition 3.21
that L is checkerboard colorable. O

As a quick corollary, by using idea of the proof we get the following result for positive virtual
links, which are virtual links where every crossing is positive.

Corollary 3.23. If L is a positive alternating virtual link, then it is Z-nullhomologous, and therefore
A(L) € Z[t*!].

An interesting fact about having a checkerboard coloring is that the state loops can be canoni-
cally oriented. The coloring induces a coloring of the regions in the complement of a given state,
and the state loops are the oriented boundary of the resulting black region:

M =
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Hence, a framed oriented virtual link L with a fixed checkerboard coloring C does not have a sign
ambiguity in the algebraic intersection numbers, and so we may define a polynomial A(L,C) e
Z[A*'][X;:1€Z" and I # 0]. One has A(L) = A(L CO)lx,sx,,-

Suppose L is 1-labeled and consider the whiskers in the expansion for A(L). The whiskers come
in pairs, where evidently one points into the black region and the other points into the white
region. Hence, if we interpret the whiskers as vectors inducing a flow across the state circles
between the white and black regions, the total flow into the black region is 0. Thus, if pX; X;, --- X;,

is a term of A(L,C) with p € Z[A”] and i; € Z - {0} for each 1 < j <k, allowing duplicates, then
Z] 11 = 0. Since i = —Z] 1 ij, the trlangle inequality yields

k-1 k-1
liel ={) il <) lijl
j=1 j=1

Furthermore, Lemma 2.4 implies |i;| is even for all j. Summarizing, we have reproved:

thm:deng2020

Theorem 3.24 ([DJK, Theorem 4.3]). Let L be a checkerboard colorable 1-labeled oriented framed
virtual link. Then, for each term pX; X; ---X; of A(L) with p € Z[A*'] and ij>1forall1<j<k,
allowing duplicate factors,

(1) 5, '] =0 (mod 4), and

(2) Zk<Z] 1 ]

In particular, k > 2.

In [DJK], they use this theorem to resolve checkerboard non-colorability of six of the seven
exceptions from [Imal6], which are 4.55, 4.56, 4.59, 4.72,4.76, 4.77, 4.96, where the theorem says
nothing about 4.72 since A(Ky7,) = 1. In all cases, the condition that k > 2 for each term suffices.

We resolve the case of 4.72 by using cabled arrow polynomials. Given a framed surface link,
recall that the n-cabling is the framed surface link obtained from embedding n parallel annuli
along the link’s framing annulus. In the case of a (2k + 1)-cabling, checkerboard colorability is
preserved. For example,

7

W/ W//////:M
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14 KYLE A. MILLER

FiGure 8. A non-reduced surface link diagram contains a separating loop (green)
intersecting the knot through a single crossing.

fig:non-reduced
The homological arrow polynomial of the 3-cabling of the 0-framed 4.72, with the substitution
A=tV4 is
—2t8 + 417 + 2915 + 10815 + 273t + 575¢% + 95242 + 1298t + 1426 + 1298t~}
+952t72+575¢73 + 273174 + 108> + 29t 0 + 4¢77 — 2478
+ X1g(t132 4 4112 117492 4 441772 1 80152 410812 + 121112 + 12117 1/2
+108t732 4 8072+ 44+772 4 17¢792 4 47112 4 t‘13/2)
+ X15(8t7 + 4410 +142¢° + 328t* + 61813 + 94412 + 1210t + 1308 + 1210+
+944t72 + 618173 + 32814 + 14217 + 44+ 0 + 8¢77)
+ Xo(—8t12 - 281132 _ 6911172 _ 116172 —13017/% — 41152 + 11113% + 242112 + 2424712
+ 111t_3/2 _ 41t_5/2 _ 130t_7/2 _ 116t_9/2 _ 69t—11/2 _ 28t—13/2 _ 8t—15/2)
+ X X12(=10813/2 = 3941172 _ 88192 _ 148+7/2 —219+%2 —300¢3? - 360t/? — 360t 1/?
— 300t %2219+ — 14877/ —88t™Y/2 —39¢711/2 _10¢713/2)
+ X2 (217 - 2417 —115t5 — 327> —709t* — 1252¢% — 1857t> — 2347t — 2534 — 2347+ 7!
—1857t72-1252t73=709t4 - 327t75 —115¢7° - 24t77 + 2t™°)
+X2(4t152 + 184132 1 4411V2 £ 82472 11261772 + 16562 + 19032 + 199t/ 41991 71/2
+190t732 1 165t752 + 12617772 + 821792 + 441712 1 184713/2 4 4471572)

We notice, for instance, X;, by itself, thus the k > 2 condition of Theorem 3.24 implies the 3-
cabling of 4.72 is not checkerboard colorable, and therefore 4.72 is not checkerboard colorable.

This completes Imabeppu’s characterization of checkerboard colorability of all virtual knots up
to four crossings.

3.6. Alternating virtual links. For classical links, a reduced alternating link diagram is one with
no nugatory crossings. That is, the identities of the opposite regions at each crossing are distinct.
Since link diagrams are checkerboard colorable, this implies that the identities of all four regions
around a crossing are distinct. Kamada in [Kam] calls a virtual link diagram proper if, when it
is cellularly embedded, the identities of all four regions are distinct around each crossing. The
Kauffman-Murasugi-Thistlethwaite theorem says that a connected reduced alternating link dia-
gram D satisfies breadth(D) = 4c(D). Kamada shows that if D is a connected proper alternating
virtual link diagram, then breadth(D) = 4(c(D) — g(D)).

A generalization of this result is in [BK], where they define a reduced surface link diagram to be
one that is cellularly embedded where there are no separating simple closed curve in the surface
that intersect the diagram through a single crossing like in Figure 8. Equivalently, a cellularly
embedded surface link diagram is reduced if, whenever the two regions opposite a crossing are
identical, then removing the interior of that region and a neighborhood of the crossing does not
disconnect the surface. They introduce homological information to the Kauffman bracket to form
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h

S

FiGure 9. A reduced diagram of 3.7 on a torus. The green loop shows the virtual

knot is not h-reduced, and both the green and blue loops show it is not proper. ..., ;...

the homological Kauffman bracket, with which they prove two of the Tait conjectures generalized
to virtual links: if D; and D, are two reduced connected alternating virtual link diagrams for the
same virtual link L, then ¢(D;) = ¢(D,) = ¢(L) and wr(D;) = wr(D,).

As a curiosity, we prove an analogue of the Kauffman-Murasugi-Thistlethwaite theorem using
the arrow polynomial. A labeled surface link diagram is h-reduced if every simple closed curve
C in the surface that passes through a single crossing has nonzero algebraic intersection number
with each component of the link. The blue loop in Figure 9 is allowed in an h-reduced diagram,
but the green loop is not. Every proper diagram is h-reduced, and every h-reduced cellularly
embedded diagram is reduced.

Let A’(L) be the result of substituting X; > X;(—A%2 — A=?)7! for each index I, which gives
another element of R,,. Considering a nonzero p € R,, as a polynomial in A, let maxdeg, p and
mindeg , p respectively denote the maximum and minimum degrees of A in terms of p, and let
breadth, p = maxdeg, p — mindeg , p.

Definition 3.25. Let D be a labeled virtual link diagram for a labeled virtual link L, and for a state
S of D, let i(S) be the number of loops C C S such that i (C) = 0 (the number of “inessential” state
loops). The diagram D is called A-h-adequate if for every state S” with b(S’) = 1, then i(S’) < i(Sy).
Similarly, D is called B-h-adequate if for every state S” with a(S’) = 1, then i(S”) <i(Sp). If D is both
A-h-adequate and B-h-adequate, then D is called h-adequate.

Proposition 3.26. Let D be an h-reduced labeled alternating virtual diagram. Then D is h-adequate.

Proof. After cellularly embedding the diagram, the A-state S, consists of simple closed curves
that bound disks in the surface since the diagram is alternating. For any checkerboard colored
diagram, the state loops can be put in a form where, away from crossings, the diagram is disjoint
from the black regions, and near crossings whiskers only appear when the crossing is contained
in the black region:

DRAFT 2020/11/15 14:17:45



16 KYLE A. MILLER

The whiskers, here, are illustrated ambiguously, and their orientation depends on the orientation
of the link. For the checkerboard coloring of the alternating diagram, we may assume the Sy
loops bound black disks, and every black disk is disjoint from the crossings, hence there are no
whiskers. Since each loop is nullhomotopic, i(S4) = bo(Sa).

Let S’ be a state with b(S’) = 1, and let c refer to the B-smoothed crossing. This introduces
four whiskers, and, by consideration of the checkerboard coloring, either two state loops merge
into one, or one state loop splits into two. In the case where two state loops merge into one, then
bo(S”) = byp(Sa) — 1 and the resulting loop C might have h;(C) = 0, so i(S”) < i(S4). In the case
where a state loop splits, then by(S’) = byp(S4) + 1 and there is a black disk that, together with a
neighborhood of ¢, contains an essential loop:

In the B-smoothed version, which is S’, by the assumption that the link is h-reduced, all four
whiskers are either pointing up or pointing down. Thus, they both have nonzero algebraic inter-
section number with each component of the link, hence i(S’) = i(S4).

Therefore, the diagram is A-h-adequate. By a similar argument, the diagram is also B-h-adequate,
and thus h-adequate. O

Proposition 3.27. Let D be an h-adequate labeled virtual link diagram for a virtual link L. Then
breadths(A’(L)) = 2¢(D) + 2i(S4) + 2i(Sp).

Proof. By the usual argument, if D is A-h-adequate then nothing cancels out the A-state’s con-
tribution to maxdeg,(A’(L)) and the B-state’s contribution to mindeg,(A’(L)). The maximal A-
degree from the term for the A-state Sy is a(Sy) — b(Sa) + 2i(Sa) = ¢(D) + 2i(Sy4). Similarly, the
minimal A-degree of the term for the B-state Sg is a(Sg) — b(Sg) — 2i(Sg) = —c(D) — 2i(Sp). Hence,
breadths(A’(L)) = 2¢(D) + 2i(S4) + 2i(Sp). O

Corollary 3.28. Let D be an h-reduced connected alternating labeled virtual diagram for a virtual link
L. Then breadth(A’(L)) = 4c(D) —4g(D), where g(D) is the genus of the surface D cellularly embeds
into.

Proof. Since i(S,) is the number of black disks and i(Sg) is the number of black disks when the
diagram is cellularly embedded in a connected surface ¥, by Euler characteristics for the disks and
the diagram as a cellular decomposition of ¥ we have ¢(D)—2¢(D)+ (i(S4)+i(Sg)) =2-2g(X). O

4. COMPUTATIONAL INVESTIGATIONS
sec:computational-investigations

We implemented the arrow polynomial in Virtual KnotFolio [Mil20] for the purpose of better
identifying knots. We also implemented the n-cabled arrow polynomial, which is the arrow poly-
nomial of the n-cabling of the 0-framing of a given oriented virtual link, and, so that it it more
easily relates to the Jones polynomial, we substitute A = t~1/4. The algorithm is essentially the
one listed in Appendix A, which is to use a “virtual Temperley-Lieb planar algebra” that has been
augmented with whiskers. The planar algebra has the property that virtual tangles may be re-
duced to a normal form. We also use the frontier-minimization heuristic to decide on the order in
which crossings are joined to the developing tangle.
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TasLe 1. Virtual knots up to four crossings with non-unique arrow polynomials.
Each row consists of virtual knots with the same arrow polynomial.

tab:arrow-non-unique

0.1 446 472 498 4.107
21 433 4.44

3.2 4.27

3.6 4.105

3.7 485 496 4.106
41 4.7

411 4.63

413 4.55 4.56
4.15 4.29

416 4.68

4.2 4.8 4.51 4.71
4.20 4.34

4.25 4.43

4.38 4.49

44 45 4.18 4.30
4.40 4.52

4.45 4.83

447 4.97

450 4.70

4.58 4.75

459 476 4.77

49 4.6l

499 4.108

The cabled arrow polynomials stand in relation to the colored arrow polynomials in the same
way that the cabled Jones polynomials do to the colored Jones polynomials. For the nth colored
arrow polynomial, we would form the n-cabling and then splice in the nth Jones—Wenzl projector
into each component. The first n cabled arrow polynomials determine the first n colored arrow
polynomials, and vice versa.

While the arrow polynomial by itself is able to distinguish the 117 virtual knots in Green’s
census up to four crossings except for the 58 in Table 1, the first and second cabled arrow poly-
nomials together fully determine the virtual knot. In contrast, the first and second cabled Jones
polynomials are unable to distinguish the virtual knots listed in Table 2.

For the 2565 virtual knots in Green’s census up to five crossings, all the virtual knots are able
to be distinguished by the first and second cabled arrow polynomials except for the 18 listed in
Table 3. The Alexander polynomial is able to distinguish the last four pairs in this table, hence
there are only five undistinguished pairs.

We have not explored taking advantage of the fact that an n-cabling is a link, so we may com-
pute the homological arrow polynomial. This might potentially allow the remaining pairs to be
distinguished.

5. MISCELLANEOUS

5.1. Mutation. For a surface link L C ¥ x I, a Conway annulus is a vertical annulus A C ¥ x I that
separates X x I such that A intersects L transversely in exactly four points. This corresponds to a
separating circle in ¥ that intersects the diagram for L in exactly four points.
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18 KYLE A. MILLER

TaBLe 2. Virtual knots up to four crossings with non-unique first and second ca-
bled Jones polynomials. Each row consists of virtual knots with the same such
polynomials.

tab: jones-non-unique

0.1 455 456 476 4.77
21 4.4 4.5 4.54 474
3.3 4.63

4.1 43 4.7 4.53 4.73
4.13 4.59 4.107

4.19 4.42

4.2 4.6 4.8 4.12 4.75
4.26 4.97

4.28 4.83

4.95 4.101

TasLe 3. Virtual knots up to five crossings with non-unique first and second arrow
polynomials. Each row consists of pair of virtual knots with the same such poly-

nomials.
tab:cabled-arrow-non-unique
5.196 5.1662
5.197 5.1657
5.204 5.1670
5.205 5.1665
5.2322 5.2411
5.287 5.1168
5.294 5.1175
5.295 5.1176
5.302 5.1183

Like the usual Conway mutation, we may cut along A, flip one piece of ¥ x I over in a way that
swaps the points of L N A in pairs, and then reglue. For example,

For a virtual link diagram in the plane, this mutation operation does correspond to finding a
Conway circle that intersects the virtual link in four points.

The arrow polynomial is not invariant under mutation. For example, the mutant virtual knots
in Figure 10 (from [FK]) have

W(K3,) = 2 —t+1+ (—t1/2 4 t—l/z)K1
W(Ks 632) = =t + 1 = tKy + (£ + )KF + (~2 + 172K,
As expected, substituting K; = 1 for all i gives identical Jones polynomials.

However, the arrow polynomial is invariant under certain types of mutations.
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Ficure 10. Mutant virtual knots (3.2 and 5.632) with different arrow polynomials,; . ...

Proposition 5.1. Let C be a Conway circle for a diagram of a surface link L in ¥, and let ¥, and ¥,
be the closures of the two pieces of ¥ — C. If L is homologous to a multicurve A C ¥, then the arrow
polynomial for L is invariant under every mutation with respect to C. This is the case, in particular, if
C bounds a disk in X.

Proof. Since L is homologous to a multicurve A in X, then the algebraic intersection numbers
can be calculated with respect to A instead of the projection of L. Hence, in every state, we may
assume there are no whiskers in the ¥, side. After evaluating loops in the X, side, there are only
three cases for the state curves in ¥, and they all remain invariant under mutation. O

Corollary 5.2. If C is a Conway circle for a virtual link diagram of a link L such that one side of C
contains no virtual crossings, then the arrow polynomial for L is invariant under mutations with respect
to C.
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ArpPENDIX A. COMPUTING THE ARROW POLYNOMIAL

sec:computing-arrow

The following is a Mathematica program for computing the (unnormalized) arrow polynomial

of a virtual link given in oriented PD format. Following the convention of the KnotTheory " Math-
ematica package, oriented crossings are represented by Xp and Xm forms as follows:

CR b 4 N b
i/v\a\, o\ \ag,
Xp[m, b, d) X[, b, ¢,d]

The rules in arrowRules give the expansion of oriented crossings with whiskers as described in
Lemma 2.4. The arrow function cuts open the virtual link to form a 1-1 tangle since this saves
having to divide by —~A? — A=2 in the end.
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ClearAll[whiskers, K, arrowl];

(* K[n] corresponds to the variable K_n x)
K[el = 1;

(* whiskers[n, a, b] represents a path from arc id a to arc id b with
n whiskers to the left if n is positive, and -n whiskers to the right
if n is negative *)

whiskers /: whiskers[n_, a_, b_] whiskers[m_, b_, c_] := whiskers[n + m, a, cJ;
whiskers /: whiskers[n_, a_, b_] whiskers[m_, c_, b_] := whiskers[n - m, a, cJ;
whiskers /: whiskers[n_, a_, b_] whiskers[m_, a_, c_] := whiskers[n - m, c, b];
whiskers /: x_whiskers*2 := x x;

whiskers[n_, a_, a_] := (
whiskers[n_, a_, b_]1 /; b

-A*2 - A*-2) K[Abs[nl/2];
< a := whiskers[-n, b, al; (¥ a normalization =)

arrowRules = {
XplLa_, b_, c_, d_]1 :>
A whiskers[@, a, b] whiskers[0, c, d]
+ A*-1 whiskers[-1, a, d] whiskers[1, c, bl,
Xm[a_, b_, c_, d_] :>
A*-1 whiskers[@, b, c] whiskers[0, d, al]
+ A whiskers[-1, b, al whiskers[1, d, c]
3

arrow[pd_PD] := With[{max = Max[List @e@e@ (List @@ pd)]l},
With[{newpd = ReplacePart[pd, FirstPosition[pd, max] -> max + 113},
(x Now newpd is a 1-1 tangle %)
With[{exp = Expand[Times @@ (newpd /. arrowRules)] /.
whiskers[n_, max, max + 1] :> K[Abs[n]/2]
3,
exp // Collect[#, A, Simplify] &111;

For example,

(* 2.1 - Virtual trefoil x)

In[1]:= green2nl = PD[Xm[1, 2, 3, 41, Xm[4, 3, 1, 21];
In[2]:= arrow[green2nl]

Out[2]= 1/A*2 + K[1] - A*4 K[1]

(* 3.7 - Virtualized trefoil x)

In[3]:= green3n7 = PD[Xm[2, 5, 1, 41, Xp[4, 6, 3, 1], Xp[6, 2, 5, 3]1;
In[4]:= arrow[green3n7]

Out[4]= -A"3 K[11*2 + (-1 + K[11*2)/A"5

(* Virtual Hopf link =)

In[5]:= vhopf = PD[Xm[1, 2, 1, 211;
In[6]:= arrow[vhopf]

Out[6]1= 1/A + A K[1]

(* 4.105 *)

In[7]:= green4n105 = PD[Xp[8, 4, 7, 51, Xp[4, 8, 3, 11,
Xpl[2, 6, 1, 71, Xpl6, 2, 5, 311;

In[7]:= arrow[green4n105]

Out[7]1= 1 - 1/A%4 + A*8
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ArpEnDIX B. COMPUTING THE HOMOLOGICAL ARROW POLYNOMIAL

The following Mathematica program computes the homological arrow polynomial A(L) of a
virtual link L given in oriented PD format using the harrow function. The component labeling is
given by the arc id modulo 10, and it is up to the user to verify that all arc ids in a given component
are the same modulo 10.

(* X[i1,1i2,...] represents X_{\pm(il,i2,...)} *)
X[cs___, 0] := X[cs];

X[] = 1;

X[zeros : (@ ...), c_, ¢cs___1 /; c <@ :=

X[zeros, -c, Sequence @@ (-{cs})];

(x vectors in Z*infinity %)
Vlcs___, @] := V[cs];
V /: VLcs1___1 + V[cs2___1 := With[{11 = {cs1}, 12 = {cs2}},
With[{1l1x = Join[l1, Table[0®, Length[12] - Length[11]1],
12x = Join[1l2, Table[0, Length[1l1] - Length[12]113},
V ee (11x + 12x)11;
V /: n_Integer V[cs___]1 := V @@ (n {cs});

(* creates a unit vector using the arc id modulo 10 x)
mkV[id_] := With[{label = Mod[id, 10]}, V @@ UnitVector[label, labell];

(* hwhiskers[vec, a, bl is an arc from a to b with whiskers to the left described by vec x)
hwhiskers /: hwhiskers[n_, a_, b_] hwhiskers[m_, b_, c_] hwhiskers[n + m, a, cl;

hwhiskers /: hwhiskers[n_, a_, b_] hwhiskers[m_, c_, b_] := hwhiskers[n - m, a, c];
hwhiskers /: hwhiskers[n_, a_, b_] hwhiskers[m_, a_, c_] := hwhiskers[n - m, c, bl;
hwhiskers /: x_hwhiskers”*2 := x x;

hwhiskers[n_, a_, a_] := (-A%2 - A*-2) X @@ n;

hwhiskers[n_, a_, b_]1 /; b < a := hwhiskers[-n, b, al; (* a normalization =x)

hArrowRules = {
XplLa_, b_, c_, d_1 :>
A hwhiskers[V[], a, bl hwhiskers[mkV[c] - mkV[d], d, c]
+ A*-1 hwhiskers[mkV[al, d, al hwhiskers[mkV[b], c, bl,
Xmla_, b_, c_, d_] :>
A*-1 hwhiskers[V[], b, c] hwhiskers[mkV[d] - mkV[al, a, dl]
+ A hwhiskers[mkV[b], a, bl hwhiskers[mkV[c], d, c]

1

harrow[pd_PD] :=
(-A*2 - A*-2) (Expand[Times @@ (pd /. hArrowRules)]/(-A"2 - A*-2) //
FullSimplify // Collect[#, A, Collect[#, _X, Simplify] &] &);

Examples:

(* Virtual Hopf link *)
In[1]:= harrow[PD[Xm[11, 22, 11, 22111
Out[1]1= (-(1/A*2) - A*2) (X[1, -11/A + A X[1, 11)

(*x The link in Figure 7 %)
In[2]:= harrow[PD[Xm[82, 31, 72, 211, Xm[72, 41, 62, 31],
Xxm[21, 52, 11, 821, Xm[11, 62, 41, 5211]
Outl[2]= (-(1/A*2) - A*2) (-A*6 - X[1, -11*2/A*10 + X[1, -1]*2/A"6 +
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