Research statement. Kyle Miller

My research revolves around low-dimensional topology, representation theory, and some combi-
natorics. I am interested in finding algebraic interpretations of diagrams (for example, diagrams
of graphs and knots) and diagrammatic interpretations of algebra (for example, tensor networks
and diagram categories). My main research programs are:

1. Taking invariants of graphs and ribbon graphs from combinatorics and reinterpreting them
from the perspective of TQFTs. This entails finding ways to cut up the invariant so it may
be computed in a piece-by-piece manner using suitable algebraic structures.

2. Finding new invariants of knots, links, and spatial graphs in 3-manifolds, for example thick-
ened surfaces up to stabilization (virtual knots and virtual spatial graphs) using techniques
from the first program.

I am also interested in using computers to help with mathematical research, for example writing
Mathematica packages [MSM], creating tools to identify knots and to compute tables of invariants
[Mil20], and formalizing mathematics in the Lean proof assistant.

1 Topological graph polynomials and 2D TQFT

Background. Many interesting ring-valued graph invariants f satisfy a deletion-contraction rela-
tion, which for fixed constants a and b is a linear relation of the form

f(G)=af(G—e)+bf(G/e)

that holds for all graphs G and edges e of a particular type, such as non-loop or non-bridge edges,
and we may diagrammatically regard this as a sort of skein relation:
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Examples include the chromatic polynomial [Bir13,Whi32], the flow polynomial [Tut47], the par-
tition function of the Q-states Potts model in statistical physics [Wu82], and the Jones polynomial
of an alternating knot from its Tait graph [Thi87]. Tutte initiated the study of graph invariants
satisfying deletion-contraction relations [Tut47,Tut54], and he defined a two-variable polynomial
that is a “universal” deletion-contraction invariant known as the Tutte polynomial.

There are a number of other graph-like objects with deletion-contraction invariants:

* A ribbon graph (Figure 1a) is a topological realization of a graph as an (oriented) surface,
where vertices correspond to disks and edges to rectangular strips. The Bollobds—Riordan
polynomial [BRO1,BR02] is a three-variable polynomial that is a deletion-contraction invari-
ant that generalizes the universality property of the Tutte polynomial to ribbon graphs. An
application in knot theory is that a specialization of the Bollobas-Riordan polynomial of the
A-state Turaev ribbon graph of a link is its Jones polynomial [DFK*08], and the polynomial
was used to relate Khovanov homology to Turaev surfaces [CK14].

* A surface graph (Figure 1b) is a graph embedded in a closed (oriented) surface. Similar “state
sum” approaches have been used to define deletion-contraction surface graph invariants
such as the Krushkal polynomial [Krull] and the surface Tutte polynomial [GKRV16].
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(a) A ribbon graph. (b) A surface graph. (c) A spatial graph.

Figure 1: Other graph-like objects.

* A spatial graph (Figure 1c) is an embedding of a ribbon graph in a 3-manifold. The Yamada
polynomial [Yam89] is a spatial graph invariant that is the Reshetikhin-Turaev invariant
where each edge is colored with the 3-dimensional irreducible representation of I/, (sl(2)).

For polynomial-valued deletion-contraction invariants, there are two coincidental phenom-
ena: (1) where real roots tend to cluster and (2) values at which the invariant has exceptional
linear relations (that is, additional skein relations). The first is motivated by statistical physics,
where the roots of the partition function of the Q-states Potts model play a role in the theory of
phase transitions, and Beraha observed roots for planar lattices tend to cluster at Beraha numbers.

While (1) has not yet been adequately explained, a complete answer for (2) is known for the
chromatic and flow polynomial of planar graphs [KS93,FK09,FK10]. The polynomials can be cal-
culated in the Temperley-Lieb category, and exceptional linear relations arise precisely at values
for which the trace radical of the category is nontrivial.

I give a complete answer to (2) for the Tutte polynomial and for the Bollobas—Riordan polyno-
mial along the locus for which it has its duality relation.

1.1 Functorial deletion-contraction invariants of ribbon graphs

The success of this representation-theoretic approach in explaining exceptional linear relations
suggested a program to construct appropriate categories such that graph invariants extend to
symmetric monoidal functors (“TQFTs”). There is some overlap between this and the Morrison—
Peters—-Snyder program to classify categories based on their linear relations [MPS17].

The chromatic category in [FK09] was defined in terms of the flow polynomial because it has
a convenient property: it is invariant under edge subdivisions, hence there are natural choices for
identity morphisms and traces. For general ribbon graphs, these are cause for complication.

In a forthcoming paper, A category in graph theory, I define a compact closed category % for
ribbon graphs by generalizing them to allow vertices to be arbitrary compact oriented surfaces
with nonempty boundary, which is justified because every deletion-contraction invariant extends
to such generalized ribbon graphs in a unique way. For k a field, symmetric monoidal functors
P — k-Mod that satisfy a deletion-contraction relation correspond to symmetric Frobenius alge-
bras, and the collection of functors associated to the semisimple Frobenius algebras determines
the most-universal deletion-contraction ribbon graph invariant.

The Bollobas-Riordan polynomial arises from the special Frobenius algebras (parameterized
by Mat, (k) ® k) with rescaled counits, giving a three-variable (Laurent) polynomial, and the
specialization n = 1 gives the Tutte polynomial. The locus along which the Bollobas—Riordan
polynomial satisfies its celebrated duality relation coincides precisely with the case m = 1.



The ribbon graph category

In more detail, the category % is derived from the category 2Cob°P" of open cobordisms [LP08].
Objects of 2Cob°P" are disjoint unions of oriented closed intervals, and morphisms are compact
oriented 2D cobordisms with corners whose components have nonempty boundary. Then, % is
2Cob°P" but morphisms are decorated with disjoint properly embedded arcs called edges. Edge
deletion corresponds to removing a neighborhood of the arc from the surface, and edge contrac-
tion to forgetting the arc. Figure 2c is an example of edge contraction giving a non-disk vertex.

(a) A morphism G in Z. (b) The deletion G —e. (c) The contraction G/e.

Figure 2: Deletion and contraction of an edge in a morphism in %.

For R a ring and 4,b € R constants, we can form a category %, by enriching & over R and
quotienting by the following linear relation in % (I,I), with I the interval object:

=aq+0]].

We then study symmetric monoidal functors % — R-Mod that factor through some %,;. The
category is equivalent to the R-enrichment of 2Cob°P*", and functors from 2Cob°P*" correspond
to symmetric Frobenius R-algebras.

Classification of deletion-contraction invariants

At least for now, a complete classification of symmetric Frobenius algebras appears to be in-
tractable, however we say two symmetric Frobenius algebras are graphically equivalent if they
define the same ribbon graph invariant.

Theorem 1.1. If k is a field of characteristic 0, then a symmetric Frobenius algebra is graphically equiv-
alent to a direct sum of matrix rings and, possibly, k[x]/(x"), with appropriate counits.

On the way to this, I studied a decomposition of general Frobenius algebras. Related to
2Cob°P" is 2ImmCob°P", of cobordisms along with an orientation-preserving immersion in
the plane, and symmetric monoidal functors 2ImmCob°P*" — k-Mod correspond to Frobenius
k-algebras. Similar to the commutative case [Abr97], I show:

Lemma 1.2. If A is a Frobenius algebra over a field k, then there is a morphism of 2ImmCob°P"((, )
whose image w € A, called the distinguished element, generates the socle of A. It is given by



The distinguished element can be used to extract the direct summands of the [Hal40, Jan59]
decomposition A = B® B+, where B is the largest semisimple subalgebra and the orthogonal com-
plement B is a radicular algebra, meaning the socle of B+ is a subset of its Jacobson radical.

Theorem 1.3. If A is a Frobenius algebra over a field k of characteristic 0, then B = Aw? in the above
decomposition.

While the Artin-Wedderburn theorem classifies semisimple Frobenius algebras, this result
implies that radicular symmetric Frobenius algebras contribute a k[x]/(x") in Theorem 1.1.

The semisimple Frobenius k-algebras determine the value of a graph in %, ;(0,0) in the sense
that they give an embedding %, — [[4 k where A ranges over these algebras. The semisimple
Frobenius k-algebras are parameterized via the Artin-Wedderburn theorem by the number of
matrix direct summands m, the sizes of the matrices n = (ny,...,n,,), and the nonzero constants
¢ = (cy,...,cy) that scale the respective direct summand’s trace form. The value of a connected
surface ¥ € 2Cob°P"(,0) through the corresponding functor is a Laurent polynomial oy, () ¢(x)
in the components of n and ¢, and the image of %, ;,(0,0) in [J4 k as A ranges over semisimple
Frobenius k-algebras can be regarded as an element of k[o; ; | i,j € Nand i > 2j]. These symmetric
functions are generically algebraically independent, and o; ; can be identified with a surface of
genus j with i —2j + 1 punctures, hence the image is isomorphic to %, ,(0,0).

Identifying the Bollobas-Riordan polynomial

The symmetric Frobenius algebra A = Mat,, (k) ® k™ with counit x®e; > ctrx gives an %, ; ribbon
graph invariant that is equivalent to the Bollobas—Riordan polynomial, and it has a convenient
two-layer graphical calculus to calculate it. Edges and vertices of ribbon graphs are expanded as
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where the black curves correspond to Mat, (k) ~ (k")* ® k" and the green graph to k™, and these
diagrams are subject to the following relations:
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The Tutte polynomial is at n = 1, and the two-variable specialization at which the Bollobas-
Riordan polynomial has its duality relation is at m = 1.

Each Kauffman state of a link diagram corresponds to the boundary of a corresponding state
in the above expansion for the A-state Turaev ribbon graph, and hence (c, n,m) = (A=2,-A?~A72,1)
is the Kauffman bracket times a power of A depending on the diagram. Thus [DFK*08] follows.

Enumerating exceptional linear relations for the Tutte polynomial

The commutative Frobenius algebra k™ as the standard represetation for S, gives a symmetric
monoidal functor that plays the role in providing centralizer algebras for the Schur-Weyl duality
of Endg (k" ®:---®k™). Hence, it is intimately related with the partition categories, whose repre-
sentation theory is very well understood [HRO5]. Partition algebras were originally devised by
Martin and Jones for computing partition functions of the Q-states Potts model for nonplanar
graphs [Mar90,Mar94,Jon94,Mar96], and Deligne defined a category Rep(S;) for generic ¢ that in-
terpolates between the pseudo-abelian envelopes of the partition categories [Del07]. The category
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has a nontrivial trace radical if t € N, and the central idempotents that generate it yield a complete
list of exceptional linear relations for the Tutte polynomial of nonplanar graphs.

The flow polynomial’s deletion-contraction relation is a scalar multiple of a projection onto
Vim-1,1) C k", and the corresponding centralizer algebra is known as the quasi-partition algebra
[DO14]. This gives a more precise list of exceptional linear relations, solving the issue that the
projector annihilates many of the linear relations derived from the partition algebra.

Calvin McPhail-Snyder and I have created a Mathematica package defining categories such as
the partition category, and it contains code for computing the central idempotents [MSM].

Proposed research

* The radicular Frobenius algebra Ak? is commutative in the category of graded vector spaces,
and its graph invariant there counts spanning forests. While this invariant already appears
as an evaluation of the Tutte polynomial and as an evaluation of a two-variable polynomial
associated to k[x]/(x"), it is not directly representable with a symmetric Frobenius algebra in
k-Mod. Analyzing symmetric radicular Frobenius algebras in suitable categories would al-
low invariants to be represented exactly, which has applications in algebraic combinatorics.

* While the symmetric Frobenius algebra A = Mat, (k)®k™ is a representation for G = GL(k")x
S,u, ribbon graphs do not surject onto the centralizer algebra for Endg(A®---® A), hence the
representation theory of GL(k") and S,, does not immediately give the exceptional linear
relations for the Bollobas—Riordan polynomial. Still, experimental evidence suggests excep-
tional relations occur exactly when n € Z or m € N, and so enumeration of exceptional linear
relations would follow from identification of the correct commutant G.

* There is an obvious analogue to % for unoriented ribbon graphs, and symmetric monoidal
functors from this category correspond to symmetric Frobenius algebras with an antiauto-
morphism. The study of such objects should yield a functorial interpretation of the four-
variable Bollobas—Riordan polynomial for unoriented ribbon graphs.

* The representation k™ in Rep(S,,) splits as V,, & V{;,_1,1), and the Tutte polynomial may
be regarded as a state sum from coloring edges with xV,, or V(,,_; 1), where x denotes a
weighting factor, and at x = 0 this is equivalent to the flow polynomial. The vanishing locus
of this as a polynomial in x and m tends to cross the m axis orthogonally (which in the usual
parameterization appears as hyperbolae). This phenomenon should have some bearing on
the planar and non-planar Beraha conjectures, perhaps by a [Sok05] multivariate approach.

1.2 Fully extended black-white 2D TQFTs

We can think of a surface graph as being a ribbon graph embedded in a closed surface, and, just
like for ribbon graphs, we can safely generalize surface graphs to allow for non-disk vertices. We
may regard generalized surface graphs as being closed (oriented) surfaces partitioned into a black
region and a white region along with a collection of arcs properly embedded in the black region.



Graphically, we can depict [G] = a[G — e] + b[G/e] like so:

- ' =a +b

Edgeless surfaces like these may be regarded as 2D cobordisms with 1D defects, where there are
black and white “world sheets” and a single kind of “domain wall” between them [DKR].

Calling this cobordism category BW2Cob, the state sum models of [FHK, LP] extend to con-
structions for TQFTs BW2Cob — k-Mod by using a pair of strongly separable Frobenius algebras
B and W over k, and this is by treating the black and white regions as separate copies of 2Cob®*',
the category of open-closed cobordisms. The Krushkal polynomial arises from using a copy of the
Bollobas—Riordan Frobenius algebra in each region, illuminating its duality relation.

Objects 1-morphisms
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Figure 3: The expected generators for the symmetric monoidal bicategory BW2Cob.

Proposed research

* The category BW2Cob is infinitely-generated, and a way to deal with this is to consider a 2-
category of fully extended black-white 2D TQFTs. Fully extended 2D TQFTs were classified
in [SP] using a refinement to Morse and Cerf theory to handle generic composites ¥ —
R? — R for ¥ a surface. For black-white surface with black region B C ¥, this would involve
incorporating genericity for dB so that the image of B in R? is an immersed curve in generic
position. With this in mind, Figure 3 is an expected set of generators for BW2Cob. Relations
would be from more careful study of generic maps ¥ x I — R? x I.

One would expect that a fully extended BW2Cob TQFT corresponds to a pair of Morita
contexts of strongly separable Frobenius algebras along with Morita contexts between cor-
responding algebras in each pair.

It should be the case that the surface Tutte polynomial in [GKRV16] corresponds to symmetric
functions on the parameters from the Artin-Wedderburn decomposition of the involved
semisimple Frobenius algebras when over C.



1.3 Penrose polynomials

Penrose defined invariants of trivalent ribbon graphs associated to metric Lie algebras g [Pen71,
BNO97]. As a tensor network, the vertices are assigned the rotationally-invariant 3-form ([-, -], -),
contracted along edges via the metric. When g is so(N), sl(N), or sp(2N), the invariant is a poly-
nomial in N, and the polynomials contain information such as planarity of the underlying graph.
For so(N), [EMM13] gives an extension to general unoriented ribbon graphs with a deletion-
contraction-like relation. Using the Brauer category, McPhail-Snyder and I showed in

[MSM20] Planar diagrams for local invariants of graphs in surfaces, J]. Knot Theory Ram-
ifications 29 (2020), no. 1, 1950093, 49, arXiv:1805.00575v2 [math.GT].

that the s[(N) polynomial extends to general ribbon graphs with signed vertices and a deletion-
contraction-like relation. In a forthcoming paper, I show how there is a two-variable polynomial
of ribbon graphs with signed vertices that satisfies a deletion-contraction-like relation and special-
izes to the so(N), sl(N), and sp(2N) Penrose polynomials. By thinking of a negative-dimensional
space as a super vector space in grading 1, then the sp(2N) polynomial is the “so(—-2N)” polyno-
mial. The polynomial can be understood functorially using diagrams for Deligne’s Rep(O(t)), and
underlying the construction is that gl(N) = Maty is a Frobenius algebra.

Proposed research

* The Penrose invariants of other metric Lie algebras have also been studied. If they arise as
the Lie algebra associated to a Frobenius algebra, then one might be able to form a univer-
sal Penrose polynomial that generalizes to non-trivalent ribbon graphs while satisfying a
deletion-contraction-like relation.

* I have calculated sl(N) polynomials for all cubic connected graphs with up to 22 vertices
and girth at least 3. Experimentally, the roots of the “sl(x~'/2)” polynomial near 1/4 are all
real, and complex roots appear to be clustered on circles centered at 1/4. By investigating
the roots of the two-variable polynomial, or by taking a Sokal-like multivariate approach
[Sok05], this phenomenon might be better understood.

1.4 Graph (co)homology

Since the success of Khovanov homology in categorifying the Jones polynomial [Kho], there have
been many similar categorifications of other state-sum invariants such as the chromatic polyno-
mial and Tutte polynomial [HGRO05,JHR06, Sto08].

The functorial point of view gives a framework for categorifications. For R a ring, consider
the bicategory Alglzz of R-algebras, bimodules, and intertwiners. Symmetric monoidal functors
1 : 2Cob°Pe" — Alg? correspond to symmetric Frobenius objects, which consist of an R-algebra
A along with a collection of bimodules s Maga, agaa, a1, and €4 satisfying Frobenius algebra
axioms such as M ®4g4 (1 ®r A) = A, and so on.

Generalized, [HGRO5] is the following. For R = Z and A a commutative ring, taking all of
the bimodules to be A gives a commutative Frobenius object. Pass to the category of cochain
complexes of bimodules. Multiplication in A defines a bimodule map p : 71 ®g ¢ — A which in
turn is used to define a bracket [[G]] = Cone([|[G —¢]] — [G/e])). The cochain complex [G] up to
isomorphism is a graph invariant, its Euler characteristic is the chromatic polynomial evaluated
at dim(A ®Q), and deletion-contraction gives a long exact sequence of cohomology groups.


http://arxiv.org/abs/1805.00575v2

If a symmetric Frobenius object A in AlglzQ is a bialgebra, then the counit for the bialgebra
gives an A-bimodule map A — 1 ®p ¢, and using this to define [G]] = Cone([G/e] — [[G —e]))
gives another chain-complex-valued invariant. If A = Z[I'] for T a finite abelian group the Euler
characteristic is the flow polynomial evaluated at |I'|.

Cones do not so easily extend to a functor for all of &%, but to fix this we can pass to the
derived category, though now calculations are at least as difficult as Hochschild homology. Short
exact sequences involving A and 1 ®p € give exact triangles for a deletion-contraction relation.

Proposed research

* In the case of A a bialgebra, these constructions are functorial on graph minors, hence it
would be worth considering excluded minors theorems. For example, it might be the case
that non-planarity is detected by a cohomology class from K3 3 or Ks.

2 Invariants of virtual knots and spatial graphs

Background. Virtual links are links in thickened surfaces up to stabilization by vertical annuli
[Kau99, Kup03]. In a sense, virtual links capture some notion of the local topology of surface
links. Virtual spatial graphs are ribbon graphs in thickened surfaces, again up to stabilization.

2.1 The arrow polynomial

The Kauffman bracket has a generalization to framed virtual links called the arrow polynomial,
which is a polynomial in Z[A*!, X}, X,,...] [DK09]. The polynomial is defined by keeping track of
“uncanceled” cusps that arise from the two smoothings of the Kauffman bracket.

In The homological arrow polynomial for virtual links (draft on my website), I generalize the
arrow polynomial for framed virtual links L to be an invariant in R = Z[A*!][X,; | ] € Hy(L)],
where we set X = 1. Considering L in a thickened surface ¥ xI, there isamap j : H;(X) — Hy(L) by
taking intersection numbers with L projected to the boundary. This map extends to the Kauffman
bracket skein module Sk(XxI) — R by multiplicatively sending simple loops S to (~A?-A"%)X,js),
where the + takes into account the fact that S is not oriented. The image of [L] € Sk(X xI) through
this map is the homological arrow polynomial. There is a graphical calculus for this by recording
local contributions to intersection numbers with colored whiskers:

Whiskers commute, and whiskers of the same color pointing in opposite directions cancel. The
net numbers of whiskers on a state loop gives an element in +H(L).

The homological point of view for the arrow polynomial has immediate applications for null-
homologous virtual links, and in particular checkerboard-colorable links. By using the 2-cabled
arrow polynomial, I was able to complete Imabeppu’s characterization of checkerboard colorabil-
ity of all virtual knots up to four crossings.

For a natural notion of reduced, the Kauffman-Murasugi-Thistlethwaite theorem was gen-
eralized to alternating virtual knots in [BK] by defining a Kauffman bracket that incorporates



Krushkal polynomial terms, strengthening a previous generalization by [Kam] that used the Kauff-
man bracket alone, but the polynomial depends on a minimal-genus representative. Using the
homological arrow polynomial, which does not need a minimal-genus representative, I proved
a generalization that is of roughly intermediate strength. A diagram is h-reduced if every simple
closed curve in the surface that transversely intersects only a single crossing does so with non-zero
intersection number. I showed that the A-breadth of the polynomial for an h-reduced diagram D
is 4(c(D) - g(D)), where g(D) is the genus of the diagram as a ribbon graph.

I have implemented the cabled arrow polynomials in Virtual KnotFolio [Mil20], which is a tool
that can help identify prime virtual knots with respect to the [Gre04] table. The first and second
cabled arrow polynomials are able to differentiate 2547 of the 2565 virtual knots with up to five
crossings. Virtual KnotFolio was used by [GH] in their study of virtual knot mosaics.

Proposed research

* If all whiskers are of the same color, then this appears to be nearly identical to the su(2)
skein theory [CMW], which was used to define a version of Khovanov homology with “dis-
orientations.” Khovanov homology with disorientations might extend to a categorification
of the arrow polynomial, and it might coincide with the categorifications in [DKM11].

In another direction, at each primitive 2pth root of unity, the trace of a link in ¥ x I as an
endomorphism in the Witten—Reshetikhin—-Turaev SU(2) TQFT gives a numerical invariant,
and [MS] showed that a normalization of this invariant converges to a Laurent polynomial
evaluated at the root of unity as p — co. The arrow polynomial variables might arise from
considering where the link sits in the skein module in families of stabilizations.

* The homological arrow polynomial is an “abelian” invariant from the skein module. More
precise ones might arise from careful study of the character variety.

2.2 The Yamada polynomial

The Yamada polynomial is an invariant of ribbon graphs in S3. It is generalized to virtual spatial
graphs in [FMO07] using the flow polynomial, and McPhail-Snyder and I generalized it to virtual
spatial graphs in [MSM20] using our S-polynomial. At the same time, [DJK] found a two-variable
Yamada polynomial for virtual spatial graphs by directly solving for skein relation coefficients.

Applying insights from the TQFT approach for the Bollobas—Riordan polynomial, I identified
the two-variable Yamada polynomial as coming from the Frobenius algebra Mat, (k) ® k" interpo-
lated at m = n"?(A+2+ A~!). This has an immediate corollary that if the two-variable polynomial
for a virtual spatial graph does not lie in Z[A*!], then it is not virtually equivalent to a classical
spatial graph.

Proposed research

* The Yamada polynomial’s Frobenius algebra is from Rep(l/,(sl(2))). Quantum groups have
resisted previous attempts to generalize to “virtual” quantum groups for virtual knot invari-
ants. Finding the correct Frobenius algebra over the correct ring to explain the two-variable
Bollobas—Riordan Yamada polynomial could illuminate a way forward.

* There are other “R-matrices” for this Frobenius algebra that give virtual spatial graph in-
variants, and it would be worth investigating whether they contain new information about



the virtual spatial graph. Similarly, other symmetric Frobenius algebras may yield more
virtual spatial graph invariants.

3 Other projects

3.1 Enumeration of knotted surfaces

Knotted (unoriented) smoothly embedded surfaces in R* can be put into a form such that, with
respect to the w coordinate, the minima occur at w = —1, the saddles at w = 0, and the maxima
at w = 1. Furthermore, the cross section at w = 0 may be assumed to be in general position with
respect to the projection onto z = 0. Hence, knotted surfaces can be given as a link diagram with
special rigid degree-4 hyperbolic crossings such that both resolutions of the diagram are unlinks.
The total number of crossings and degree-4 vertices is called the ch-index, and this structure was
exploited by Yoshikawa to produce an enumeration of all prime knotted surfaces with diagrams
having ch-index at most 10 [Yos94].

In joint work with Maggie Miller and Clayton McDonald, we are extending Yoshikawa’s table
to ch-index 11 with computational aid. The techniques we are attempting are general enough that
we should be able to eventually continue to ch-index 12, though with considerably more effort.

3.2 Formalization of 3-manifold topology in a proof assistant

Lean is a system for computer-verified proof. There is a lively community of mathematicians who
are developing a library for Lean called mathlib [The], and they have made significant progress
toward the formalization of a complete undergraduate mathematics curriculum while also for-
malizing objects such as perfectoid spaces [BCM]. There is currently a project to formalize Smale’s
proof of the existence of sphere eversions.

I have been contributing to mathlib with an aim to eventually be able to formalize combina-
torial 3-manifold topology. One piece of this has been the formalization of simple graphs, which
will eventually lead toward multigraphs, surfaces, and eventually triangulated 3-manifolds. With
a more immediate goal to show there are at least three distinct knot types, I recently also con-
tributed the definition of racks and quandles along with Joyce’s AdConj universal construction
[Joy82]. Eventually, I plan to work on the loop and sphere theorems and normal surface theory.
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