To formalized mathematics and back
with the Lean theorem prover

Kyle Miller

University of California, Santa Cruz

UCSC CSE Colloquium
24 January, 2024

| am interested in creating software tools for
mathematicians, computer scientists, and students.

Idea:
We can leverage formalization in novel ways to

design and develop useful tools.

e Informalization
e Knots and algorithms
e The future

Software correctness is essential

Computer systems are integrated into much of the modern world.

Software defects are frequent.

Defects can lead to loss of property or loss of life.

Aerospace

Ariane 5 test launch in 1996:

Invalid data conversion led to
shutdown of inertial navigation system
and destruction of launch vehicle.

$370 million

Medicine

1985-87: The Therac-25 radiation
therapy machine delivered at least six
overdoses. Two attributed to race
conditions.

Two deaths and at least four injured.

Cybersecurity

2012: OpenSSL had a latent buffer
over-read vulnerability. Discovered and
reported two years later as Heartbleed.

Unknown total impact, estimated at
least $500 million.

Formal methods reduce software defects

Any testing or verification we can do reduces defects.
Gold standard: a full formal verification with a complete specification.

Writing proofs can be costly and takes expertise.

Reducing costs with Lean ‘ —

The cost can be brought down with

e computer aid and
e libraries of formalized mathematics

Lean is a programming language and theorem prover, and it can be part of the

solution.

Lean is a programming language

Lean 4 supports functional and imperative paradigms and compiles to C.
Has a sophisticated type system like Coq or Agda.
Supports invariants and proofs, using the same language.

def scale (xs : List Int) (¢ : Int) : List Int :=
match xs with
| [1 == []
| % =& xs' == (c *® %) 72 scalexs" i

def scale (a : Array Int) (c : Int) : Array Int := Id.run do
let mut b : Array Int := #[]
for h : i in [@:a.size] do
b := b.push (c * al[i] 'h.2)
return b

structure NonemptyList (T : Type) where
List @ LiSTE T
nonempty : list # []

Mathematics itself is amenable to formal methods

A formal logic system is a language along with truth-preserving formal symbolic
manipulations. Examples: first-order logic, type theory.

Formalization hypothesis:

All of mathematics can be represented in a formal logic system.

Mathematics itself is amenable to formal methods

A formal logic system is a language along with truth-preserving formal symbolic
manipulations. Examples: first-order logic, type theory.

Formalization hypothesis:

All of mathematics can be represented in a formal logic system.

%6443. F: o, Bel.d:anB=A.=.avBe2

Dem.
F.%5426.0F:a=tz.8=1y.d:avfBe2.=.2%y.
[%51-231] SJzaty=A.
[%1312] =.anfB=A (1)

F.(1).%1111:85.D
Fi(ge,y) a=t2.8=1ty.D:avBe2.
F.(2).%11'54.%52'1.D F. Prop
From this proposition it will follow, when arithmetical addition has been
defined, that 1 +1 = 2.

il

anB=A (2

Mathematics itself is amenable to formal methods

A formal logic system is a language along with truth-preserving formal symbolic
manipulations. Examples: first-order logic, type theory.

Formalization hypothesis:

All of mathematics can be represented in a formal logic system.

Computer formalization hypothesis:

We can develop tools to write formal proofs at a comfortably high level.

Lean is flexible!

Lean is an interactive theorem prover

Has a similar type theory to Coq or Agda.

Has mathlib, a large library of undergraduate-level mathematics and beyond.

Proofs are “programs”, often constructed with a higher-level tactics language.

Lean is an interactive theorem prover

Has a similar type theory to Coq or Agda.
Has mathlib, a large library of undergraduate-level mathematics and beyond.

Proofs are “programs”, often constructed with a higher-level tactics language.

Tactic proofs

Formal proof
Elaborator - Kernel

Goal states

Lean is an interactive theorem prover

Has a similar type theory to Coq or Agda.
Has mathlib, a large library of undergraduate-level mathematics and beyond.

Proofs are “programs”, often constructed with a higher-level tactics language.

Tactic proofs

Formal proof
Elaborator -

Goal states

theorem scale_append (xs ys : List Int) (c : Int) :
scale (xs.append ys) c = (scale xs c).append (scale ys c) := by
induction xs with

| nil => rfl
| cons x xs ih => simp only [List.append, scale, ih]

e [Formalization

e Knots and algorithms
e The future

English

formalization

English

formalization

informalization

We realized this arrow
was missing!

Patrick Massot, Université Paris-Saclay

Textbooks lack context

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E€ is closed. Choose x€ E. Then x ¢ E, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Textbooks lack context

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x € E®Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Why are we choosing an x?
What is the current goal?

Textbooks lack context

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x € E®Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° n N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Current proof state:
X is a topological space
What if the document could show this context? E is a subset of X

E*€is closed

z 1s an element of F

Goal: z € E°

Textbooks show only one level of detalil

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x€ E. Then x ¢ E°, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Textbooks show only one level of detalil

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x€ E. Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Why can we deduce this fact?

Textbooks show only one level of detalil

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x€ E. Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

prove E C E°. < Let x be an element of E. One can see that x ¢ E°.

Assume that z is a limit point of E°. We see x € E°. Using this and further pro of.
our assumption that z ¢ E° we are done.
One can obtain an open neighborhood N of such that N N E¢ = &. To go a rbitrari Iy deep’
we need a formalized proof!

A structured proofis a proof written to make the logical structure evident.

Def The reakest cowmwown divisor & of o omd Yo 9 fhe %{“‘*‘7‘
i element of io\el \ Al amd L\bg , Y exdsks .
Weitken o (o, %) or O\’LALG‘h\.

TkW\ Sut‘;pose OL,)Q(:l omd o #F0 or b#0. Thew (a,\o) ests
T omd s posikive.

Pf Without loss of qenerohly, a 30 (by acrb € weed).

Lek S=§ael | Ao omd dlbi.
Clowm: 1 e S.
1¢S5 & Ll omd Llb

Herct G 15 nowemply. .

Uoinn = for ol €S, p&\q,d’ TN
Suﬂ’“s‘ eed . Thew ela, o theve 1 kel swe

Lok K=HeN. Them el =lal. o

Cose T) =0, Then ypc0, omd o=ke=0. Cowtvodickiou!!

Case T Tuene is cedin tat =k, Thewn Jd =k lel = kel e\,

Haws el ¢ ol Yoy def. ‘
Wove 3(\3_\,’—',\&\7) »\ov\e.w\'k,. Aa"‘\’“"‘j lewwna. for \.Je\l-ordeﬂvﬁj

s by o Sreod(es'\' elewmeunt d. By second Aaiun, de§ s O"%ﬁ'

oo omd 1b=b so helds la,J)e(.

Lemma 2.2.8

The element a € F is a root of the nonzero polynomial f(x) in F iff 2 — a is a factor of f(x). Asa
consequence, the number of roots of a polynomial is no more than its degree.

Proof 2.29

1.Ifa € Fisarootof f,then z — a is a factor of f.
1. Suppose a € F is aroot of f.
2. Let g, r satisfy f(x) = g(z)(z — a) + r(z) per the division algorithm.
3.0 = £(a) = g(a)(a — a) +r(a) = r(a)
4. Since degr < 1,7(z) =0
5. Hence f(z) = g(z)(z — a).
2.Ifa € F and ¢ — a is a factor of F', then a is a root of F'.
1. Let g be such that f(z) = g(z)(z — a)
2. f(a) = q(a)(a—a) =0
3. The number of roots of f is no more than the degree of f.

1.Casel.deg f=0
1. Since f is non-zero, it has no roots.

CaseIl.deg f >0
1.Casel. fhasaroota € F
1. Then f has (z — a) as a factor.
2. Let g be such that f(z) = g(z)(z — a).
3.degq < deg f. By induction, g has at most deg g roots.
4. Thus f has at most 1 + degq = deg f roots.

Case II. f does not have a root in F'
1. fhas 0 < deg f roots.

A formalized proof is the exemplary structured proof.

theorem rudin {X : Typex} [TopologicalSpace X] (E : Set X)
IsOpen E o« IsClosed Ec := by
constructor
+ intro hop
apply isClosed_iff_clusterPt'.2
intro x hx
have hx' : x ¢ interior E := by
intro hi
rcases mem_interior.1l hi with (U, hU, hop, hm)
rcases hx U (IsOpen.mem_nhds hop hm) hop with (y, hy)
exact absurd (hU (Set.mem_of_mem_inter_left hy))

((Set.mem_compl_iff _ _).1 <| Set.mem_of_mem_inter_right hy)
have hintc := Set.compl_subset_compl_of_subset (subset_interior_iff_isOpen.2 hop)
exact hintc hx'
+ intro hc
apply subset_interior_iff_isOpen.1
intro x hx
have hx' : x € Ec := Set.not_mem_compl_iff.mpr hx
have hnc : -ClusterPt' x Ec := by
intro h

exact absurd (isClosed_iff_clusterPt'.1 hc _ h) hx'
rcases not_clusterPt'_principal_iff.1 hnc with (N, hN, hop, he)
apply mem_interior.2
use N, Set.diff_eq_empty.mp he, hop
exact mem_of_mem_nhds hN

However, it is not human readable on its own.

Informalization for interactive structured proofs

Theorem. Let X be a topological space. Let E be a subset of X. Then E is open if and only if E° is closed.

Proof. > By definition it suffices (1) to prove that if E is open then E€ is closed and (2) to prove that if E€is
closed then E is open.

1. ©Claim: if E is open then E° is closed. 2. ©Claim: if E€is closed then E is open.
Suppose FE is open. < Using isClosed_iff clusterPt' it suffices to prove for all cluster points a of Assume that E°is closed. <> Using subset_interior_iff isOpen it suffices to prove E C E°. © Let
E¢ a € E°. © Let z be a cluster point of E°. z be an element of E.
Claim: z ¢ E°. Claim: z ¢ E°.
Assume that z € E°. Using our assumption that z € E°, mem_interior proves one can Using our assumption that & € E with Set.not_mem_compl_iff we are done.
obtain an open subset U of E such that x € U. We see for all open neighborhoods U’ of z,
! C 1
U N Eis nonempty. Claim: z is not a cluster point of E*.
Claim: U is a neighborhood of z. Assume that z is a cluster point of E°.
Using our assumption that U is open and our assumption that z € U with IsOpen.mem_nhds Claim: z € E°.
we are done.

Claim: for all cluster points a of E, a € E°.

Using the above claim and our assumption that U is open, a preceding claim proves one can obtain g onsamumption e B%s dosed withistiosed, P cisefbo wes dme.

an element y of U N E°.
Using our assumption that z is a cluster point of E° with a preceding claim we are done.

Claim: y € E.
Using the above claim and our assumption that z ¢ E° we are done.

We see y € U. Using the above claim with our assumption we are done. L
Using our assumption that z is not a cluster point of E*, not_clusterPt'_principal_iff proves one

Claim: y ¢ E. can obtain an open neighborhood N of z such that N N E€ = @. > Using mem_interior it suffices to

We see y € E°. Using the above claim with Set.mem_compl_iff we are done. prove there exists an open subset ¢ of E such that z € ¢.

Using the above claims we are done. Claim: N C E.
We see N \ E = @. Using the above claim with Set.diff eq empty we obtain N C E.
Claim: (E°)° C EF. Using th'e above cla'im, N' and our assumptio'n that IV is open it suffices to prove € N. < Using our
assumption that N is a neighborhood of z with mem_of mem_nhds we are done.
Claim: E C E°.
Using our assumption that F is open with subset_interior_iff isOpen we are done.

Using the above claim with Set.compl_subset_compl_of subset we are done.

Such a document could answer any question
Clim: 2 € (E°)" you have about the proof.

1t suffices to prove that z ¢ E°, and by assumption we - are done.

Using the above claim with our assumption we are done. But authoring these by hand iS a Chore.

Mathlib is a large library of formalized mathematics

e Can all of mathematics
135k theorems
Contains undergraduate, graduate, and be formallzed In a

even some research level mathematics. unified, Cohesive |ibra ry’?

Number of lines

I mathics [mathlibs

1600000
1400000
1200000
1000000
800000
600000

400000

Hall's marriage theorem in mathlib [Gusakov—Mehta—Miller 2021]

theorem Finset.all_card_le_biUnion_card_iff_exists_injective
{1 : Type u} {a : Type v} [DecidableEq a] (t : 1 » Finset a) :
(V (s : Finset 1), s.card < (Finset.biUnion s t).card) e
3 (f: 1> a), Function.Injective f A ¥ (x : 1), f x € t x

Informalization for accessible formal proof libraries

® theorem Finset.all_card_le_biUnion_card_iff_exists_injective
{1 : Type u} {a : Type v} [DecidableEq a] (t : 1 » Finset a) :
(Y (s : Finset 1), s.card s (Finset.biUnion s t).card) e
3 (f: 1> a), Function.Injective f A ¥ (x : 1), f x € t x

® Lett be atype and let a be a type with decidable equality. Let ¢ be an (-indexed
family of finite subsets of a. Then the following are equivalent:

e For all finite subsets s of ¢, |s| < |Um€stx|.

e There exists an injective function f : ¢+ — « such that for all z in ¢,

f(z) € t,.

This takes less specialized training to read!

Autoformalization

An autoformalization system automatically translates informal documents into a
machine-checkable formalization.

Large Language Models (LLMs) are being applied to this problem.

Example: Math competition problem statements to formal specifications
[Wu—Jiang—Li—Rabe—-Staats—Jamnik—Szegedy 2022]

Training data is scarce

Observation: formalization does not lead to training pairs.
Papers are too informal.

They have to be transformed and expanded.

The formalization might have no obvious connection to structure of paper.

Formal blueprints

A formal blueprint is an design document for a formalization project.

Paper Formal blueprint

It contains a plan (in natural language) of each theorem and definition that will be in
the formalization.

Creating a formal blueprint takes significant effort and domain knowledge.

Formalizing from the blueprint takes only general knowledge.

Home

Legend =

From the formal blueprint for
Polynomial Freiman-Ruzsa (PFR) Conjecture
project, led by Terence Tao

Dependencies

ﬂ heorem 6.24 (Entropy version of PFR) x\

Let G = F3, and suppose that X?, XJ are G-valued random
variables. Then there is some subgroup H < G such that

d[X?;Up] + d[X3; Up] < 11d[X7; X3],

where Uy is uniformly distributed on H. Furthermore, both
d[X?; Uy| and d[X3; Uy are at most 6d[X?; XJ].

\ LaTeX lean

v

Informalization for training data for autoformalization

Informalization naturally yields a formal blueprint.

Paper Formal blueprint

informalization

We could use it to generate two sets of pairs from arbitrary Lean code.

e Formal blueprint & Lean
e Paper & formal blueprint

Autoformalizers could train for each translation task independently.

How to informalize

| developed a prototype auto-informalizer.

Input: alean 4 module

Output: an interactive document (HTML)

Users write extensions to translate concepts to English.
Currently extensions focus on topology.

Principle: output that is not wrong

<. N

Wrong

Principle: output that is not wrong

|deally, we output correct informal proofs.

Ambiguity, omissions, lack of clarity: these are bugs, but not wrong.

Informalizer uses symbolic Al principles, known as “good old-fashioned Al”.

We can have precise understanding of the informalization, and fix it as needed.

LLMs: output is not generally not wrong

We could apply a large language model (LLM) to the informalization problem.

However:

e While LLMs easily produce informal-looking text, it can be wrong.
e More training and better prompting, decrease probabilities, not eliminate.
e LLMs struggle with logical reasoning.

@

You
The following theorem statement is formalized in Lean. Please give a precise and
accurate translation of it into mathematical English.

theorem Finset.all_card_le_biUnion_card_iff_exists_injective
{t: Type u}{a: Type v} [DecidableEq a] (t: L. = Finset a) :
(v s:Finset(, s.card < (s.biUnion t).card) <
3f: 1> q, Function.InjectivefA v x,fxetx

ChatGPT
The given Lean theorem formalizes a statement about finite sets. Let's translate it into

mathematical English.

"For any types Land a, where a is equipped with a decidable equality, and for any family
of finite sets t indexed by elements of (, the following statement holds: The cardinality
of any finite subset s of Lis less than or equal to the cardinality of the union of the sets
indexed by the elements of s if and only if there exists an injective function f from tto a
such that, for every element x in (, the image of x under f belongs to the set indexed by

X"

ChatGPT
The given Lean theorem formalizes a statement about finite sets. Let's translate it into

mathematical English.

"For any types Land a, where a is equipped with a decidable equality, and for any family
of finite sets t indexed by elements of (, the following statement holds: The cardinality
of any finite subset s of Lis less than or equal to the cardinality of the union of the sets
indexed by the elements of s if and only if there exists an injective function f from tto a
such that, for every element x in , the image of x under f belongs to the set indexed by

X"

ChatGPT
The theorem states that for any indexed family of finite sets ¢ : {indexed by ¢} with

elements in a type a, the following equivalence holds:

For all finite index sets s : Finset ¢, the cardinality of s is less than or equal to the
cardinality of the union of the sets indexed by s (denoted as s biUnion t), if and only if
there exists an injective function f : ¢ — « suchthat for all z in ¢, the element f(z)

belongs to the set ().

ChatGPT
The theorem states that for any indexed family of finite sets ¢ : {indexed by ¢} with

elements in a type «, the following equivalence holds:

For all finite index sets s : Finset ¢, the cardinality of s is less than or equal to the
cardinality of the union of the sets indexed by s (denoted as s biUnion %), if and only if
there exists an injective function f : ¢ — a such that for all z in ¢, the element f(z)
belongs to the set t(z).

ChatGPT
The given Lean theorem can be translated into mathematical English as follows:

"For any types tand a, where a is equipped with a decidable equality, and for any
collection of finite sets indexed by L denoted by t, the following statement holds: The
cardinality of any finite subset s of Lis less than or equal to the cardinality of the union
of the sets in t indexed by the elements of s if and only if there exists an injective
function f from L to a such that for every element x in |, the image of x under f belongs
to the set t(x)."

ChatGPT
The given Lean theorem can be translated into mathematical English as follows:

"For any types Land a, where a is equipped with a decidable equality, and for any
collection of sets indexed by L denoted by t : L = Finset a, the following statement holds:
The cardinality of any finite subset s of Lis less than or equal to the cardinality of the
union of the sets corresponding to the elements of s, if and only if there exists an
injective function f: 1= a such that for every element x in |, the image of x under f

belongs to the set t x."

ChatGPT
The theorem states that for any indexed collection of finite sets ¢ : \t — Finset \a,

the following equivalence holds:

Vs : Finset \, s.card < (sbiUniont).card <= 3f:\t— \o, Functi

In simpler terms, the inequality s.card < (s biUnion t).card for any finite set s of
indices is equivalent to the existence of an injective function f from the indices to the

elements, such that each element fx belongs to the corresponding set tx.

Consecutive responses with the same prompt, all different

Let’s look at a demo

General architecture

Lean print_proof Explanation
frontend webapp

Theorem explainer

Proof term

TacticTree inference Tactic explainers :
decompilers

Proposition
explainers

Entity explainers

Expr — LaTeX
LeanTeX

Theorem A set E is open if and only if its complement is closed.

theorem rudin [TopologicalSpace X] (E : Set X) :
IsOpen E o IsClosed Ec

Theorem (rudin). Let X be a topological space. Let E be a subset of X.
Then E is open if and only if E° is closed.

From Bourbaki, Topologie Générale:

Theorem. Let X be a topological space, A a dense subset of X, f: X — Y a
mapping of X into a reqular space Y. If, for each x € X, f(y) tends to f(x)
when y tends to x while remaining in A then f is continuous.

theorem continuous_of_dense [TopologicalSpace X] [TopologicalSpace Y] [RegularSpace' Y]
{A : Set X} (hA : Dense A) (f : X - Y) (hf : V x, ContinuousWithinAt' f A x) : Continuous"' f

Theorem (continuous_of_dense). Let X be a topological space and let Y be a regular topological
space. Let A be a dense subset of X. Let f : X — Y be a function. Assume that for all elements x

of X, f is continuous at x within A. Then f is continuous.

Ontologies

In Al, an ontology is a formal system that models knowledge about a domain:

concepts, properties, and relations

Ontologies are the foundation for reasoning and inference.

Engineering an ontology takes detecting un-represented knowledge and modifying
the model to represent it.

Lean and English

Lean 4 has expressions, declarations, metavariables, local contexts, tactic states,
tactics, and so on.

To translate to English, we need

e an ontology compatible with (a subset of) common practice mathematical

language and
e a mapping from the Lean 4 ontology to the English ontology.

The better the ontology, the more natural the output we can produce.

An ontology for theorem-style paragraphs

Noun

kind

article

text

plural text
inline text

plural inline text

Noun type
text
plural text

Entity
id
name

Adjective
kind
article
text

Accessory
kind
text

structure Entity where structure Adjective where

fvarid : FVarld kind : Name

entityName : String expr : Expr

noun : Option Noun article : Article
provides : Array FVarld := #[fvarid] text : String
adjectives : Array Adjective := #[]

accessories : Array Accessory := #[] structure Accessory where

kind : Name
expr : Expr
text : String

structure NounTypePayload where
type : String
(text pluralText : String)

structure Noun where
kind : Name
article : Article
text : String
pluralText : String
typePayload : Option NounTypePayload := none
(inlineText inlinePluralText : String)

[TopologicalSpace X] [TopologicalSpace Y] [RegularSpace' Y]
Let X be a topological space and let Y be a regular topological space.

A A
art. noun art. adj.

t t |

no

A

un

A

{A : Set X} (hA : Dense A) (f : X - Y)

Let A be a dense subset of X. Let f : X — Y be a function.

A A

A t t

art. adj. noun type art. noun

Entity construction

For each local variable,

Find and run a handler that applies to the variable.

Handlers generally
Decide what the local variable is about.
Examples: (T : Type) isabout T (h : U € Nhd x) isaboutU
Looks for or creates an entity entry, taking into account dependencies.

Adds/alters the Noun or attaches an Adjective or Accessory, as appropriate.

@[english_param const.TopologicalSpacel def param_TopologicalSpace :

@[english_param const.RegularSpace'] def param_RegularSpace'

fvarid, deps, type@(.app _ (.fvar fvaridE)), _ => do
trace[English] "Using the english_param handler for TopologicalSpace"
let e « getEntityFor fvaridE deps
if e.kind == “Type then
let ns : NounSpec :=
{ kind := ‘TopologicalSpace
article := .a
text := nt!"topological space{.s}"
inlineText := nt!"topological space{.s} {.latex e.entityName}" }
addEntity <| e.pushNoun fvarid (« ns.toNoun #[typel)
else
addEntity <| e.pushAccessory fvarid
{ kind := “TopologicalSpace,
expr := type,
text := "a topology" }
.y —y _, _ => failure
: EnglishParam
fvarid, deps, type@(.app (.app _ (.fvar fvaridg)) _), false => do
trace[English] "Using the english_param handler for RegularSpace'"
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := “RegularSpace',
expr := type,
article := .a,
text := "regular" }
=> failure

Y Ry Ry

The parameter handlers are currently crafted by hand

EnglishParam

@lenglish_param const.Dense] def param_Dense : EnglishParam
| fvarid, deps, type@(.app _ (.fvar fvaridE)), false => do
trace[English] "Using the english_param handler for Dense"
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := ‘Dense,
expr := type,
article := .a,
text := "dense" }
| _» _, _, _ => failure
@lenglish_param const.IsOpen] def param_IsOpen : EnglishParam
fvarid, deps, type@(.app _ (.fvar fvaridg)), false => do
trace[English] "Using the english_param handler for IsOpen"
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := “IsOpen,
expr := type,
article := .an,
text := "open" }
_ => failure

|_l —r

@lenglish_param const.IsClosed] def param_IsClosed : EnglishParam
| fvarid, deps, type@(.app _ (.fvar fvaridE)), false => do
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := “IsClosed,
expr := type,
article := .a,
text := "closed" }
—y _» _y _ => failure

Basic grammatical construction

“Let entityName [: noun.type] be article adjectives noun.text with accessories.”
Let n be a natural number.

Let f/: X — Y be an injective function.

“For all adjectives noun.inlineText with accessories, ...”

For all finite types T with decidable equality, ...

A simple calculation: merging

If consecutive entities have compatible data, we can merge their introductions into
a single sentence.

theorem inj_comp {a B v} {f : a » B} {g : B » v} (hf : injective f) (hg : injective g) :
injective (g o f) :=

Theorem (inj_comp). Let o, 5 and v be types. Let f : « — Sand g : S — -y be injective functions.

Then g o f is injective.

theorem inj_comp {a B vy} {f : a » B} {g : B » y} (hf : injective f) (hg : injective g) :
injective (g o f) :=

Theorem (inj_comp). Let o, 5 and v be types. Let f : « — Sand g : S — -y be injective functions.

Then g o f 1s injective. x I noun 1 type 1 type adj. noun

| | |

Propositions to English

#english_prop V {a B vy : Type _} {f : « = B} {g : B = v},
injective f =+ injective g -+ injective (g o f)

for all types «, types 3, types 7, injective functions f : @« — 3 and
injective functions g : 3 — 7, g o f is injective

Grammatical agreement

With English, there are two main grammatical features that need to be observed:

e Plurality
o Verbs: is/are
o Nouns: function/functions

e Articles

o A function
o Aninjective function

We avoid tenses, but we do make use of the subjunctive for “to be”:

e Letn be a natural number.
e Suppose nis a natural number.

Describing proofs

The next big part: representing proofs

Main elements:

e Deducing tactic proof structure
e Tactic describers
e Proof term decompiler

InfoTrees

Original purpose: providing all the information one sees in the VS Code IDE,
including mouseover text, jump-to-definition, and the Infoview.

Nat.zero_add (n : N) : @ + n =n Infoview (goal states)
dd_com /
with | import Init.Data.Nat.Basic mn' * N
xact (Nat.zero add _).symm lh T m + n' =n' +m
h => 1 — 1
m+ (n 1) =m+ n

(n' + 1) = (m + n'Y + 1 *= Nat_add <iirr

Excerpt of an InfoTree ™ 07 ™

<Node elaborator="Lean.Parser.Tactic._aux_Init_Tactics__ macroRules_Lean_Parser_Tactic_tacticHave__1" type="tactic">

<Node elaborator="Lean.Parser.Tactic._aux_Init_Tactics___ macroRules_Lean_Parser_Tactic_tacticRefine_lift__1" type="tactic
<Node elaborator="Lean.Elab.Tactic.evalFocus" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalFocus" type="tactic"></Node>
<Node elaborator="Lean.Elab.Tactic.evalTacticSeq" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalTacticSeqlIndented" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalParen" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalTacticSeq" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalTacticSeqlIndented" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalRefine" type="tactic">
<Node binder="false" elaborator="Lean.Elab.Term.elabNoImplicitLambda" type="term">
<type>x = y</type>
<Node binder="false" elaborator="Lean.Elab.Term.expandHave" type="term">
<type>x = y</type>
<Node type="macro_expansion'>

<from>have key : f x = f y := by exact hg _ _ h;
?_</from>

<to>let_fun key : f x = f y := by exact hg _ _ h;
?_</to>

<Node binder="false" elaborator="Lean.Elab.Term.elabLetFunDecl" type="term">
<type>x = y</type>
<Node binder="false" elaborator="«_aux_Init_Notation__ macroRules_term_=__2»" type="term">
<type>Prop</type>
<Node type="macro_expansion'>
<from>f x = f y</from>
<to>binrels%s Eqt (f x)(f y)</to>
<Node binder="false" elaborator="Lean.Elab.Term.0Op.elabBinRel" type="term">
<type>Prop</type>
<Node binder="false" type="term">
<type>Prop</type>

Tactic describers

These consume these trees and create hierarchical explanations.

/—— A tactic describer is a function that takes a "TacticTree' and returns a “ProofStep.

If it does not want to be responsible for the tree, then it can use “throwInapplicableDescriber’. -/
def TacticDescriber := TacticTree - DescriberM ProofStep

Tactics are semi-hierarchical

We want to recover the true proof tree.
Many tactics produce side goals that are solved for later.

obtain (V, V_in, V_op, hV) : 3V € Nhd x, IsOpen V A f '' (V n A) c V'

constructor
" - rcases (hf x).2 V' V'_in with (U, U_in, huU)
« trivial . 5 .
rcases exists_IsOpen_Nhd U_in with (V, V_in, V_op, hVU)
rfl use V, V_in, V_op

exact (image_subset f $ inter_subset_inter_left A hVU).trans huU

Tactic describers may elect to collect side goals.

/—— For every sibling tree that's a sidegoal for tree, use "f' to filter them,

and return the chosen ones. The list of sibling trees is updated to be unchosen trees. -/

def getSideGoalsFor (tree : TacticTree) (f : TacticTree - MVarld - DescriberM Bool) :
DescriberM (Array TacticTree)

Explanations

The output of a tactic describer is a piece of a structured document. These support:

Block indentation

Paragraph breaks

Text with a (+)/(-) to replace some text with other text
Clickable words that show additional text

Tooltips

Goal states

Multiline equations

There is a JavaScript webapp that renders Explanations.

This webapp could be used for other purposes.

Proof term explanations

For a number of tactics, we decompile the proof term it generates into an
equivalent sequence of simpler tactics and then compile that into English.

Reason 1. We want to avoid recapitulating tactic implementations.

Reason 2. The “Laziness Principle”: a Lean author writes primarily to be
understood by the computer.

Reason 3. Not everything that a computer wants to see is similarly desired by a
human reader.

This is used by exact, apply, refine, and many others.

exact hf x y key

Using our assumption that f is injective and our assumption that f(z) = f(y) proves z = y.

Proof term explanations, a decompiler

Local context + expected type + proof term
¥
Synthesized tactic trees, with synthesized intermediate goal states
¥

Rendered Explanations

Example: if introducing a variable requires unfolding a goal, there is an explainer
inserting an intermediate step: “by definition of injectivity, ...”

LeanTeX

#latex 1 + (2 + 3)
1+ (2+3)

#latex (1 + 2) + 3
14243

##latex Nat x Nat x Nat x Fin 37

NxNxNxN g7
#latex s.sum (A x => x + 1)

Z(x +1)

res

#latex 1+1/(1+1/(1+1/(1+1/(1+1/(1+1)))))
1

1+

1
L + Tasasyasn
#latex 27272

#latex (2°2)°2

#latex

f#tlatex

f#tlatex

f#tlatex

f#tlatex

#tlatex

s.sum (A x => 2 * x)

22:2-w

TES
s.sum (A x => x + 1) * a
(Z(a’ + 1)) a
TES

a* s,sum (A x => x + 1)

a-jz:(m-kl)

TES
s.sum (A x =>x +1) + a
(Z(m + 1)) + a
TES

a+s.sum (A x=>x+1)

at Y (x+1)

reESs

s.sum (A x => x + 1) * s.sum (A x => 2 * x)

(Z(az+ 1)) -y 22

reEs TES

Ongoing work and investigations

As we saw, we have a working informalizer!

There is plenty more to do, and plenty more ontology engineering to consider.

e [Formalization
e |Informalization

e The future

s

=%
POt ?,

Knots

In physics

Knots

In life:

Do you know how to make these? No?

WELL YOUR POCKET DOES.

Knots

In mathematics:

Definition. A knot is a closed loop in 3D space.

Classifying knots

What are all the knots?

How can we distinguish different knots?

Classifying knots

What are all the knots?

How can we distinguish different knots?

P &
D

Classifying knots

What are all the knots?

How can we distinguish different knots?

P &
D

TABLE OF PRIME KNOTS

Knots with up to 7 crossings

3 44 © |51 ;-) 5o 140 61 o+ 62 141 63 141
7 /\ 7 73 1+ 7 76 14 77
DBOIBED

Knots with 8 crossings

81 ’{ 8 2 140 4 ’wlw\ 241 s 141 7 a2
QDBD RS DD

8s &% 8 03 © |8 142 11 14 2 11 13/‘:1\ 14 141
VD RD W

815 240 816 142 8 ©|8 © |819 340 80 0+2 8
N\

& & Q) R | ED ED

u,) L,u U‘J %Q lrgluq?l g?% i er L\
Knots with 9 crossings
91]%’ O’;\El 93(‘3_‘/0\ 94 ’20\ 95’_*&\ 96(:{3j 97(\2,0(> 93((;‘ 99/3;}\ 910(\
£3 183 80 83 K383 83| &P &2 &R
O11 2+ 12 1+ O13 210 O14 111 O15 141 O16 340 Q17 12 O1g 210 O1g 111 Q20 241

X Q _ A
DIRDP DS DB
O21 141 922 142 Qo3 210 9 Qo5 141 o6 1+2 Qo7 043 Oog 1+2 Oog 142 Qa0 1+2

f') ’\ i~ q), -

& &3 B W B D W &
Qa1 1 a2 ¥ (O3 1+2 ¥ [Oa4 122 Oas 1+0 Oae 2+1 Qa7 11 Oag 240 Oag 141 Qa0 122
48 | B | EX |G| | W | & | TP @)
QJbS Q(GQB) 9((6;‘")j QQ\Q 9(@8 Qgi/i\)) QCC\Z,7 9((3: \D 'E)%C};23 O

h’\ 3\2»‘ 4. 45,‘: ae,ﬂ-ﬂ\ 47"3 4 141 49 240

52 D DD VYWD

“Papers contain knot diagrams, and we manipulate knots on chalkboards.

Is there software to read knot diagrams from photographs?”
— Question in Perspectives on Dehn Surgery at ICERM 2019

There was no such software,
but | had an idea for an algorithm.

There was no such software,
but | had an idea for an algorithm.

This led to KnotFolio
https://knotfol.io/

Toolbox: Painting

Tools

B

Pencil mode

Zx|X

Pencil colors

[} o o]

Load image: | Choose File | No file chosen

(o iten]

| Convert to diagram |
Calculate invariants

KnotFolio

CLie

&

{

>
N

¢

<o

GitHub | Releases | Help
Toolbox: Image importing

Scale: Sm—()

Invert colors: [J

Blur: @
Adaptive radius; S—()
Threshold: S—

KnotFolio 212 GitHub | Releases | Help
Toolbox: Image importing

Scale: S—t)

Invert colors: [J

Blur; ===l

PR Adaptive radius: e ®
Threshold: —

KnotFolio

[ear [<414

GitHub | Releases | Help

Toolbox: Diagrams

Modification tools

K= @
[o) o o]

\ Mirror] Invert H Make alternating H Auto-color]

[Convert to drawing]

Isotopy tools
l Beautify H Reset view]

Diagram information @ Pretty O Mathematica
Crossings: 8

Components: 1

Writhe: -2

Bridges: 6

Can. genus: 3
Turaev genus: 1
Properties: plus-adequate
¥ Linking matrix

» Seifert form

PD: @ KnotTheory O Oriented KnotTheory O SnapPy

pD[Xx[2,7,3,8], XI[6,1,7,2], XI[3,12,4,13], X[11,4,12,5],
x[13,9,14,8], X[16,5,1,6], X[9,15,10,14], X[15,11,16,10]] 4

DT: [6,-12, 16, 2,-14, -4, -8,-10]

Kauffman bracket:
—A10 2 A6 _A24242_ A64410_414

Identification
Candidates: 8_20

Invariants

Determinant: 9

(Cabled) Jones polynomials:

Vi=—t+2—t142172 -1t 417445

Conway potential:
1+2z2+2z4

Alexander polynomials:

Image Diagram Invariants Identification

820 0+2

Yy
Vi=—t+2-1 4200 -3+t -1 N\

\/U At)y=1-2¢+32-2,++¢ O\A.n

oysterman's stopper

PD[Xm([2,7,3,8], xm[6,1,7,21,
Xm(3,12,4,13], xm[11,4,12,5],
Xp[13,9,14,8], xm[16,5,1,6],
Xp [

9,15,10,14], Xp[15,11,16,10]]

Algorithms in KnotFolio

| wrote all the algorithms myself in JavaScript.

Jones polynomial

Alexander polynomial and Conway potential

Canonical Seifert genus

Seifert form

Turaev genus

Crossing number, writhe, bridge number counting, linking matrix

“Can KnotFolio help us identify virtual knots?”

“Can KnotFolio help us identify virtual knots?”
Yes, but the Jones and Alexander polynomials aren’t enough.

There are many virtual knots, and coincidences.

TaBLE 4. Virtual knots up to four crossings with non-unique 1- and 2-cabled Jones

Crossings | Count polynomials. Each cell consists of virtual knots with the same such polynomials.
0 1 0.1, 4.55, 4.56,4.76,4.77 | 2.1,4.4,4.5,4.54,4.74 | 3.3,4.63 | 4.1,4.3,4.7,4.53,4.73
4.2,4.6,4.8,4.12,4.75 4.13,4.59, 4.107 4.19,4.42 | 4.26,4.97
1 0 4.28,4.83 4.95,4.101
TaBLE 5. Virtual knots up to five crossings with non-unique 1-, 2-, and 3-cabled
2 1 Jones polynomials. Each cell consists of virtual knots with the same such polyno-
mials.
3 7 5.15,5.116 5.16, 5.117 9:23; 5.71 5.24,5.73 5.25,:5.72
5.26, 5.74 5.58,5.94 5.59,5.95 5.60, 5.96 5.61,5.97
4 108 5.196,5.1662 | 5.197,5.1657 | 5.204,5.1670 | 5.205,5.1665 | 5.287,5.1168
5.294,5.1175 | 5.295,5.1176 | 5.302,5.1183 | 5.661,5.662 | 5.754,5.763
5.757, 5.760 5.807,5.1672 | 5.808,5.1674 | 5.809, 5.1673 | 5.810, 5.1675
S 2448 5.811, 5.814,5.1676, 5.1679 5.812,5.813,5.1677,5.1678 5.1113,5.1124
5.1116,5.1121 | 5.1184,5.1187 | 5.1186, 5.1189 | 5.1190, 5.1192, 5.1193, 5.1195
5.1191, 5.1194 | 5.2322, 5.2411

Furthermore, the n-cabled Jones polynomial of a virtual knot with
c crossings is by definition a polynomial with 2" terms.

For example, the 3-cabled Jones polynomial of a 5-crossing
virtual knot has 35,184,372,088,832 terms.

Even with tricks, it is too slow to run in an interactive application.

|

b
\ _a a +A‘1\/ ab a+b
b/ N\ ’ N

Arrow polynomials y Ly T T
—at” + _
bxa - >” < BN

| discovered a way to compute arrow polynomials of virtual knots,
which are a refinement of Jones polynomials. [Miller 2023]

| implemented the algorithms once in JavaScript, and once again in Lean.

| did not formally verify the Lean code, however | did include invariants.

structure Poly where structure ATLP where
terms : Array Monomial (fst snd : Nat)
incr : (terms.map Monomial.exponents).strictIncreasing whiskers : Int

normalized : fst = snd

structure Monomial where structure ATLD where
exponents : Array Int coeff : Poly
coeff : Int paths : Array ATLP
coeff_nonzero : coeff # 0 := by simp [x*] coeff_nonzero : coeff # @ := by simp [x]
exp_norm : exponents.back? # some @ := by simp [x] ordered : paths |>.map ATLP.toPair |>.strictIncreasing

nodup : (paths.toList.bind ATLP.indices).nodup

Evaluation

The 1-, 2-, and 3-cabled arrow polynomials of all virtual knots up to 5 crossings took
2.8 days of computer time with the Lean implementation.

TaBLe 2. Virtual knots up to five crossings with non-unique 1- and 2-cabled arrow
polynomials. Each cell consists of virtual knots with the same such polynomials.

5.196,5.1662 | 5.197,5.1657 | 5.204, 5.1670
5.287,5.1168 | 5.294,5.1175 | 5.295, 5.1176
5.757,5.760 | 5.1113,5.1124 | 5.2322, 5.2411

5.205, 5.1665
3.302, 53183

TasLe 3. Virtual knots up to five crossings with non-unique 1-, 2-, and 3-cabled
arrow polynomials. Each cell consists of virtual knots with the same such polyno-
mials. Pairs indicated by 1 are distinguishable by their Alexander polynomials.

5.196, 5.1662

9:197, 51657

5.204, 5.1670

5.205, 5.1665

5.287,5.1168 t

5.294,5.1175%

5.295, 51176t

5.302,5.11851

5.2322, 5.2411

Improvements

Now KnotFolio can uniquely identify 2543 out of 2565 small virtual knots.

While having two implementations yielding the same results is nice,
ideally we would have a formally verified algorithm!

e Formalization
e Informalization
e Knots and algorithms

Informalization

e Write interactive textbooks and evaluate their use pedagogically
o Target: introduction to proofs and discrete mathematics courses at UCSC
o Test out Ul concepts for navigation and surfacing salient details
o Plan: obtain grants to support curriculum development

Informalization

e Write interactive textbooks and evaluate their use pedagogically
o Target: introduction to proofs and discrete mathematics courses at UCSC
o Test out Ul concepts for navigation and surfacing salient details
o Plan: obtain grants to support curriculum development
e Integrate into the mathlib documentation
o Solve scaling issues (need explainers for the 73955 definitions and 135484 theorems)

Informalization

e Write interactive textbooks and evaluate their use pedagogically
o Target: introduction to proofs and discrete mathematics courses at UCSC
o Test out Ul concepts for navigation and surfacing salient details
o Plan: obtain grants to support curriculum development
e Integrate into the mathlib documentation
o Solve scaling issues (need explainers for the 73955 definitions and 135484 theorems)

e Collaborate with Al researchers

o Autoformalization researchers send frequent inquiries about the prototype
o Explore ML augmentations to informalization (style, level of detail, etc.)

Informalization

e Write interactive textbooks and evaluate their use pedagogically

o Target: introduction to proofs and discrete mathematics courses at UCSC
o Test out Ul concepts for navigation and surfacing salient details
o Plan: obtain grants to support curriculum development

e Integrate into the mathlib documentation
o Solve scaling issues (need explainers for the 73955 definitions and 135484 theorems)

e Collaborate with Al researchers

o Autoformalization researchers send frequent inquiries about the prototype
o Explore ML augmentations to informalization (style, level of detail, etc.)

e Create a correct informalizer
o Use controlled natural language such as Formal Theory Language (ForThel)
Develop a full ontology for structured proofs
Prove that informalizer output is semantically equivalent to original Lean
Apply this framework to other domains — element of expert systems
answer “why” with reliable arbitrarily detailed explanations

o O O

Formal knot theory @ (\\(i’\jj

People use my KnotFolio program.

The algorithms are carefully-written JavaScript — they should be formally verified.

Formal knot theory @ (\\(_\;\jj

People use my KnotFolio program.

The algorithms are carefully-written JavaScript — they should be formally verified.

Long term project:

e Formalization of piecewise linear manifolds, 3-manifold topology, 2D and 3D
meshes, normal surface theory, knot theory, skein theory, planar algebras,

quantum topology, etc.
e \erified algorithms for low-dimensional topology, including knot theory.

e Add support to popular software such as SnapPy and Regina to output proof
certificates.

Carrying this out requires one foot in theoretical mathematics and another in CS.

Verified compilation projects

At Swift Navigation in 2015, we developed a compiler for programming with linear
algebra and tensors, to target memory-constrained systems.

4 ngh level embedded linear algebra programming

Lo

Verified compilation projects with Scott Kovach (Stanford)

At Swift Navigation in 2015, we developed a compiler for programming with linear
algebra and tensors, to target memory-constrained systems.

)
R G
ey
Z iAo

235 A7

__zz«Plover

Z"High-level embedded linear algebra programming
S

=
D

We are now working on languages for high-level programming with tensors,
probability distributions, associative arrays, and so on, using Lean.

Current project: Design compilation strategies to lower these computations to
efficient kernels, and prove (in Lean) that the transformation is correct.

Last thoughts...

Lean is a versatile (and fun!) language for programming and formalization.
The fruits of formalization go beyond verifying truth.

Let’s enrich education, mathematics, and engineering with these tools! Q

Kyle Miller, PhD
@ https:/kmill.github.io/ kymiller@ucsc.edu

KnotFolio https://knotfol.io/
arrow_poly https://github.com/kmill/arrow_poly
Lean FRO https://lean-fro.org/

More slides

What is Lean?

The Lean theorem prover ‘ :\V/N

Lean is one of the newest interactive theorem provers.

1973 Mizar
1986 Isabelle
1989 Coq
1999 Agda
2013 Lean 1
2021 Lean 4

It was initially developed at Microsoft Research and Carnegie Mellon University by
Leonardo de Moura, Jeremy Avigad, and others.

The Lean theorem prover ‘ :\V/N

Lean is a functional programming language

Like Coq, its type theory is based on the Calculus of Inductive Constructions
Dependent types: argument types may depend on previous arguments
Every mathematical proposition can be encoded as a type;

Proofs are “programs”! (the Curry—Howard correspondence)

Unlike Coqg or Agda, has proof irrelevance and quotient types

e [ts theory is equiconsistent with ZFC plus some inaccessible large cardinals
[Carneiro 2019]

These features together work well for mathematics,
and (partly by accident) mathematicians form a large fraction of Lean users.

Lean 4 E\V/N

e |[s a full programming language that is also an interactive theorem prover
o Much of Lean 4 is written in Lean 4

e CompilestoC

e Can prove theorems in Lean 4 about programs written in Lean 4

e Can write programs in Lean 4 that write programs written in Lean 4
o For example, tactics are proof-writing programs

e Can extend Lean 4 from within Lean 4

o Syntax, macros, elaboration rules, tactics, etc.
o One language for everything!

Lean Focused Research Organization ‘ :\V/N

As of July 2023, the Lean FRO is a nonprofit dedicated to advancing formal
mathematics, tackling scalability, usability, and proof automation.

The Lean FRO has assembled a team to develop Lean.

Its mission includes supporting broad applications including software and hardware
verification and Al research for mathematics and code synthesis.

It is on a five-year mission to become self-sustainable.

Examples

/= Linked lists -/
inductive List (a : Type u) where
| nil : List «
| cons (head : a) (tail : List a) : List «

inTixr:67 * 8: " -=> List.cons

f=— Notation =Dt v;z]1" for "X 22 y 2% Z 58 Listinil™ <f
syntax (name := List.brackets) "[" term,x "]" : term
macro_rules (kind := List.brackets)

| “CI1) => " {List.nil)
| “CI$x1) == “{$x 22 List.nil)
| “([$x, $xs,%]) => “($x :: [$xs,*])

Examples

def List.length : List a » N
| [1 =>0
| _ :: xs => xs.length + 1

def List.head (xs : List a) (h : length xs # 0) : a :=

match xs with
| [1 => absurd rfl h /- *h® is specialized to ‘length [] = @°

but “length []1 = @° by definition. -/

| x :: _ =>x

-— "match’ can see the absurdity of "h® in the "'nil’ case automatically.
def List.head' (xs : List a) (h : length xs # @) : a :=

match xs, h with

| x :: _, _=> X
def List.append (xs ys : List a) : List a :=
match xs with

| [1 =>ys
| x :: xs' => x :: xs'.append ys

Examples

theorem List.length_append (xs ys : List «) :

(xs.append ys).length = xs.length + ys.length := by

induction xs with

| nil =>
/- goal is " ([].append ys).length) = [].length + ys.length® -/
simp [append, length]

| cons x xs' ih =>
/- ih is " (xs'.append ys).length = xs'.length + ys.length’

goal is “((x :: xs').append ys).length = (x :: xs').length + ys.length® -/

simp [append, length]
/- goal is " (xs'.append ys).length + 1 = xs'.length + 1 + ys.length® -/
rw [ih]
/- goal is "xs'.length + ys.length + 1
ring

xs'.length + 1 + ys.length® -/

/- Tersely: -/
theorem List.length_append' (xs ys : List a)
(xs.append ys).length = xs.length + ys.length := by
induction xs <;> simp! [x]; ring

Examples
#print List.length_append

theorem Mine.List.length_append.{u_1} : V {a : Type u_1} (xs ys : List a),
List.length (List.append xs ys) = List.length xs + List.length ys :=
fun {a} xs ys »
List.rec (of_eq_true ((congrArg (Eq (List.length ys)) (zero_add (List.length ys))).trans (eq_self (List.length ys))))
(fun x xs' ih »
id
(Eq.mpr (id (ih » Eq.refl (List.length (List.append xs' ys) + 1 = List.length xs' + 1 + List.length ys)))
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.atom_pf (List.length xs'))
(Mathlib.Tactic.Ring.atom_pf (List.length ys))
(Mathlib.Tactic.Ring.add_pf_add_1lt (List.length xs' ”~ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add (List.length ys ~ Nat.rawCast 1 *x Nat.rawCast 1 + 0))))
(Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat N (Eq.refl 1)))
(Mathlib.Tactic.Ring.add_pf_add_gt (Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_add_zero
(List.length xs' ~ Nat.rawCast 1 * Nat.rawCast 1 +
(List.length ys ~ Nat.rawCast 1 *x Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.atom_pf (List.length xs'))
(Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat N (Eq.refl 1)))
(Mathlib.Tactic.Ring.add_pf_add_gt (Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_add_zero (List.length xs' ~ Nat.rawCast 1 * Nat.rawCast 1 + 0))))
(Mathlib.Tactic.Ring.atom_pf (List.length ys))
(Mathlib.Tactic.Ring.add_pf_add_1t (Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_add_1t (List.length xs' ~ Nat.rawCast 1 * Nat.rawCast 1)

(Mathlib.Tactic.Ring.add_pf_zero_add (List.length ys ~ Nat.rawCast 1 *x Nat.rawCast 1 + 0))))))))
Xs

What is mathlib?

Partial mathlib overview

General algebra

Category theory category, small category, functor, natural transformation, Yoneda embedding, adjunction, monad,
comma category, limits, presheafed space, sheafed space, monoidal category, cartesian closed, abelian category. See
also our documentation page about category theory.

Numbers natural number, integer, rational number, continued fraction, real number, extended real number, complex
number, p-adic number, p-adic integer, hyper-real number. See also our documentation page about natural numbers.

Group theory group, group morphism, group action, class formula, Burnside lemma, subgroup, subgroup generated by
a subset, quotient group, first isomorphism theorem, second isomorphism theorem, third isomorphism theorem,
abelianization, free group, presented group, Schreier's lemma, cyclic group, nilpotent group, permutation group of a
type, structure of fintely generated abelian groups.

Rings ring, ring morphism, the category of rings, subring, localization, local ring, noetherian ring, ordered ring.
Ideals and quotients ideal of a commutative ring, quotient ring, prime ideal, maximal ideal, Chinese remainder theorem,
fractional ideal, first isomorphism theorem for commutative rings.

Divisibility in integral domains irreducible element, coprime element, unique factorisation domain, greatest common
divisor, least common multiple, principal ideal domain, Euclidean domain, Euclid's' algorithm, Euler's totient function (),
Lucas-Lehmer primality test.
Polynomials and power series polynomial in one indeterminate, roots of a polynomial, multiplicity, separable

polynomial, K[X] is Euclidean, Hilbert basis theorem, A[X] has gcd and lem if A does, A[X;] is a UFD when A is a UFD,

irreducible polynomial, Eisenstein's criterion, polynomial in several indeterminates, power series.

Algebras over a ring associative algebra over a commutative ring, the category of algebras over a ring, free algebra of a
commutative ring, tensor product of algebras, tensor algebra of a commutative ring, Lie algebra, exterior algebra,
Clifford algebra.

Field theory field, characteristic of a ring, characteristic zero, characteristic p, Frobenius morphism, algebraically closed
field, existence of algebraic closure of a field, C is algebraically closed, field of fractions of an integral domain, algebraic
extension, rupture field, splitting field, perfect closure, Galois correspondence, Abel-Ruffini theorem (one direction).

Homological algebra chain complex, functorial homology.

Number theory sum of two squares, sum of four squares, quadratic reciprocity, solutions to Pell's equation,
Matiyasevic's theorem, arithmetic functions, Bernoulli numbers, Chevalley-Warning theorem, Hensel's lemma (for Zy),
ring of Witt vectors, perfection of a ring.

Transcendental numbers Liouville's theorem on existence of transcendental numbers.

Representation theory representation, category of finite dimensional representations, character, orthogonality of
characters.

Linear algebra

Fundamentals module, linear map, the category of modules over a ring, vector space, quotient space, tensor product,
noetherian module, basis, multilinear map, alternating map, general linear group.

Duality dual vector space, dual basis.

Finite-dimensional vector spaces finite-dimensionality, isomorphism with K", isomorphism with bidual.
Finitely generated modules over a PID structure theorem.

Matrices ring-valued matrix, matrix representation of a linear map, determinant, invertibility.
Endomorphism polynomials minimal polynomial, characteristic polynomial, Cayley-Hamilton theorem.

Structure theory of endomorphisms eigenvalue, eigenvector, existence of an eigenvalue.

Bilinear and quadratic forms bilinear form, alternating bilinear form, symmetric bilinear form, matrix representation,
quadratic form, polar form of a quadratic.

Finite-dimensional inner product spaces (see also Hilbert spaces, below) existence of orthonormal basis, diagonalization
of self-adjoint endomorphisms.

See also our documentation page about linear algebra.

Topology

General topology filter, limit of a map with respect to filters, topological space, continuous function, the category of
topological spaces, induced topology, open map, closed map, closure, cluster point, Hausdorff space, sequential space,
extension by continuity, compactness in terms of filters, compactness in terms of open covers (Borel-Lebesgue),
connectedness, compact open topology, Stone-Cech compactification, topological fiber bundle, topological vector
bundle, Urysohn's lemma, Stone-Weierstrass theorem.

Uniform notions uniform space, uniformly continuous function, uniform convergence, Cauchy filter, Cauchy sequence,
completeness, completion, Heine-Cantor theorem.

Topological algebra order topology, intermediate value theorem, extreme value theorem, limit infimum and supremum,
topological group, completion of an abelian topological group, infinite sum, topological ring, completion of a topological
ring, topological module, continuous linear map, Haar measure on a locally compact Hausdorff group.

Metric spaces metric space, ball, sequential compactness is equivalent to compactness (Bolzano-Weierstrass), Heine-
Borel theorem (proper metric space version), Lipschitz continuity, Holder continuity, contraction mapping theorem,
Baire theorem, Arzela-Ascoli theorem, Hausdorff distance, Gromov-Hausdorff space.

See also our documentation page about topology.

Analysis
Topological vector spaces local convexity, Bornology, weak-* topology for dualities.

Normed vector spaces/Banach spaces normed vector space over a normed field, topology on a normed vector space,
equivalence of norms in finite dimension, finite dimensional normed spaces over complete normed fields are complete,
Heine-Borel theorem (finite dimensional normed spaces are proper), norm of a continuous linear map, Banach-
Steinhaus theorem, Banach open mapping theorem, absolutely convergent series in Banach spaces, Hahn-Banach
theorem, dual of a normed space, isometric inclusion in double dual, completeness of spaces of bounded continuous
functions.

Hilbert spaces Inner product space, over R or C, Cauchy-Schwarz inequality, self-adjoint operator, orthogonal
projection, reflection, orthogonal complement, existence of Hilbert basis, eigenvalues from Rayleigh quotient, Fréchet-
Riesz representation of the dual of a Hilbert space, Lax-Milgram theorem.

Differentiability differentiable function between normed vector spaces, derivative of a composition of functions,
derivative of the inverse of a function, Rolle's theorem, mean value theorem, Taylor's theorem, ck function, Leibniz
formula, local extrema, inverse function theorem, implicit function theorem, analytic function.

Convexity convex function, characterization of convexity, Jensen's inequality (finite sum version), Jensen's inequality
(integral version), convexity inequalities, Carathéodory's theorem.

Special functions logarithm, exponential, trigonometric functions, inverse trigonometric functions, hyperbolic
trigonometric functions, inverse hyperbolic trigonometric functions.

Measures and integral calculus sigma-algebra, measurable function, the category of measurable spaces, Borel sigma-
algebra, positive measure, Stieltjes measure, Lebesgue measure, Hausdorff measure, Hausdorff dimension, Giry monad,
integral of positive measurable functions, monotone convergence theorem, Fatou's lemma, vector-valued integrable
function (Bochner integral), uniform integrability, L? space, Bochner integral, dominated convergence theorem,
fundamental theorem of calculus, part 1, fundamental theorem of calculus, part 2, Fubini's theorem, product of finitely
many measures, convolution, approximation by convolution, regularization by convolution, change of variables formula,
divergence theorem.

Complex analysis Cauchy integral formula, Liouville theorem, maximum modulus principle, principle of isolated zeros,
principle of analytic continuation, analyticity of holomorphic functions, Schwarz lemma, removable singularity,
Phragmen-Lindelof principle, fundamental theorem of algebra.

Distribution theory Schwartz space.

Probability Theory

Definitions in probability theory probability measure, independent events, independent sigma-algebras, conditional
probability, conditional expectation.

Why Lean? Why not $THEOREM_PROVER?

Lean happens to have a community of research mathematicians surrounding it;
it feels comfortably set-theory-ish to them.

The community formalizes things that are interesting to mathematicians:

Perfectoid spaces [Buzzard, Commelin, and Massot 2020]

Scholze’s main theorem of liquid modules [Commelin, et al. 2022]

The existence of a sphere eversion [Massot, Nash, and Van Doorn 2023]
The Polynomial Freiman-Ruzsa conjecture [Terence Tao, et al. 2023]

(To be clear, projects by other communities are not uninteresting!)

Why formalize mathematics?

Mathematicians seem not to be so interested in computer verification of proofs —
while mistakes do slip into most papers, they’re often believed to be “minor” since
“the idea is generally right.”

So why go through all this effort?

Crystallization of knowledge

Compatibility of definitions between papers (like Hales’ Formal Abstracts)

To relieve referees from having to verify correctness

Preservation of mathematics

Formalization can reveal missing mathematics

Tautologically, it’s becoming “interesting” to the wider mathematics community

o 0k wWN

| hear mathematicians outside ITP communities say they think journals will
eventually require formalized proofs. (Will it be the new LaTeX?)

ForThel and Naproche

There are numerous efforts to make precise human-readable modeling languages.

For example, ForThelL (Formal Theory Language) [Paskevich 2007/]
gives a flexible language for first-order logic.
ForTheL: every natural number m greater than 0 divides m!

Meaning: Vm ((m e Number A m e Natural A
A isGreaterThan(m, Zero)) D Divides(m, Factorial(m)))

Naproche is a proof assistant using this. [Koepke, et al. 2009]

Naproche implements elaboration of ForThelL.

Example from early 2022

ﬂ Consider the following theorem statement (written in Lean) and give an accurate translation
of it into English.

theorem finset.all_card_le_bUnion_card_iff_exists_injective
{t: Type u}{a: Type v} [decidable_eq a] (t: 1> finset a) :
(v (s:finset), s.card = (s.bUnion t).card) &
(3 (f: 1= a), function.injectivef A v x,fx e t)

This theorem states that for any two sets of elements, namely, a collection of sets indexed by
atype "L and asingle set o, with “a" having decidable equality, the following two

statements are equivalent:

* Foranysubset “s" of "7, the cardinality of “s" is less than or equal to the cardinality of
the union of all the sets indexed by “s".

* There exists a function “£* from “v" to "« such that “£" is injective (i.e., distinct
elementsin “ " map to distinct elementsin “a*)andforall *x*in “v*, “£(x) ° belongs to

the set “t(x) * indexed by “x".

ChatGPT doesn’t introduce the family of sets t. What recourse do we have?

More informalization

Our driving example

From Bourbaki, Topologie Générale.

Theorem. Let X be a topological space, A a dense subset of X, f: X =Y a
mapping of X into a reqular space Y. If, for each x € X, f(y) tends to f(x)
when y tends to x while remaining in A then f is continuous.

Proof. We have to show that f is continuous at each point x € X. Let then V’

be a closed neighbourhood of f(z) in Y; then by hypothesis there is an open
neighbourhood V of z in X such that f(VNA) C V’. Since V is a neighbourhood
of each of its points, we have

f(z)= lim f(y)

y—z,yeVNA

for each z in V, and from this it follows that f(z) € f(VNA) C V’, since V' is
closed. The result now follows from the fact that the closed neighbourhoods of
f(x) form a fundamental system of neighbourhoods of f(x) in Y. H

theorem continuous_of_dense [TopologicalSpace X] [TopologicalSpace Y] [RegularSpace Y]
{A : Set X} (hA : Dense A) (f : X - Y) (hf : V x, ContinuousWithinAt f A x) : Continuous' f := by
intro X
suffices key : Y V' € Nhd (f x), IsClosed V' - 3 U € Nhd x, f '' Uc V'
« dntro V' V' _in
rcases RegularSpace.closed_nhd_basis (f x) V' V'_in with (W, W_in, W_closed, hW)
rcases key W W_in W_closed with (U, U_in, hU)
exact (U, U_in, hU.trans hW)
intro V' V'_in V'_closed
obtain (V, V_in, V_op, hV) : 3V € Nhd x, IsOpen VA f '" (V n A) ¢ V'
« rcases (hf x).2 V' V'_in with (U, U_in, huU)
rcases exists_IsOpen_Nhd U_in with (V, V_in, V_op, hVU)
use V, V_in, V_op
exact (image_subset f $ inter_subset_inter_left A hVU).trans huU
use V, V_in
rintro 42, 2 1in; rfl)
have 1imV : TendsToWithin f (V n A) z (f z)
+ constructor
- apply V_op.inter_closure (t := A)
exact (z_in, hA z)
» intro W W_in
rcases (hf z).2 W W_in with (U, U_in, huU)
use U, U_in
exact (image_subset f $ inter_subset_inter_right U (inter_subset_right V A)).trans huU

calc
f z € closure (f '' (V n A)) := limV.mem_closure_image
_ < closure V' = closure_mono hV
_ =y = V'_closed.closure_eq

Example: the proof

This is expanded out to a comparable
level of detail to the Lean code.

Lean proofs can take advantage of the
elaborator being able to fill in details
obvious to a computer, so it’s not
surprising if an English version might
be wordier!

Proof. Let z be an element of X. < One can see it suffices to prove that for all closed neighborhoods
V"’ of f(z), there exists a neighborhood U of z such that f[U] C V’,© which we see by the following
argument:
Let V' be a neighborhood of f(z). One can obtain a closed neighborhood W of f(z) such that T/
& Vo One can obtain a neighborhood U of z such that f[U] C W. - We will show that U is suitable
by proving that U is a neighborhood of z and f[U] C V’. By assumption, U is a neighborhood of z.
Using our assumption that f[UU] C W and our assumption that W C V' proves f[U] C V'.

Let V'’ be a closed neighborhood of f(z).
Claim: there exists an open neighborhood V' of z such that f[V N A] C V.

One can obtain a neighborhood U of z such that f[UN A] C V”. One can obtain an open
neighborhood V of z such that V' C U. -~ We will show that V" is suitable by proving that V' is a
neighborhood of z, V' is open and f[V N A] C V’. By assumption, V' is a neighborhood of z. By
assumption, V is open. Using our assumption that V' C U and our assumption that f[U N A] C V'
proves f[VNA] CV'.

Using this claim we obtain an open neighborhood V' of z such that f[V N A] C V’. - We will show that V'
is suitable by proving that V' is a neighborhood of x and f[V] C V’. By assumption, V is a neighborhood of

x. © Let zbe an element of V.
Claim: f(z1) tends to f(z) as z; tends to z within V' N A.

By definition it suffices (1) to prove that z € V' N A and (2) to prove that for all neighborhoods V" of
f(2), there exists a neighborhood U of z such that f[UN (VN A)] CV".

1. " Onecanseethatz € V' N A.
2. -/One can see that for all neighborhoods V” of f(z), there exists a neighborhood U of z such that
flUN(VNA)] CV”.

Consider the following:

_— Using our assumption that f(z;) tends to f(z) as z; tends to z within V' N A

z)e f[VNA
fz) € fl] proves this step.
N7 Using our assumption that f[V N A] C V' proves this step.
=V’ Using our assumption that V'’ is closed proves this step.

This completes the proof. u]

Trivial logic

Mathematicians do not manually curry/uncurry implications/conjunctions

theorem obvl (P Q : Prop) (hp : P) (hq : Q) : PAQ

theorem obv2 (P Q : Prop) (hpg : PA Q) : PAQ

Theorem (obv1l). Let P and () be propositions. If P and () then P and ().

Theorem (obv2). Let P and () be propositions. Assume that PP and (). Then P and ().

(The wording difference is due to a
limitation in the current ontology.)

Expressions to LaleX: LeanTeX

We have a Lean.Expr = LaleX pretty printer.
Basic “impedance mismatch”:
Lean expressions are trees, but traditional notation is a 2D layout.

Precedence levels are not sufficient to model 2D layout properly.

or ‘

2
T+ y? . (z + y)? T+ y -
2 3 23 2 3

So far this has been enough:

inductive LatexData where
/—— anything that can support superscripts and subscripts without needing parentheses -/
| Atom (latex : String) (bigness : Nat := 0) (sup? : Option LatexData) (sub? : Option LatexData)
/—— anything that is a row of operators and operands -/
| Row (latex : String) (lbp : BP) (rbp : BP) (bigness : Nat)

Some LaleX pretty printers

latex_pp_app_rules (const := Eq)
| _, #[_, a, bl => do
let a « latexPP a
let b « latexPP b
return a.protectRight 50 ++ LatexData.nonAssocOp " =" 50 ++ b.protectLeft 50

/—— Fancy division: use frac or tfrac if things aren't too small. -/
latex_pp_app_rules (const := HDiv.hDiv)
| _, #[_, _, _, _, a, bl => do
let frac «
match (« read).smallness with
| @ => pure LatexData.frac
| 1 => pure LatexData.tfrac
| _ => failure
let a « withExtraSmallness 1 <| latexPP a
let b « withExtraSmallness 1 <| latexPP b

return frac a b

/—— Powers. -/
latex_pp_app_rules (const := HPow.hPow)
| _» #[_, _» _» _» @, bl => do
let a « latexPP a
let b « withExtraSmallness 2 <| latexPP b
return a.sup b

| am interested in creating software tools for
mathematics, computer science, and education

(r2+)/(z72-]) iterate 8

KnotFolio Gear| [<]o® Gitub | Releases | Help

Toolbox: Diagrams

pyquiz

This is a domain-specific language for authoring Canvas quizzes. It is designed for with an eye toward

1. making it easy to have a ready library of questions to create new quizzes and

2. making it easy to generate variants of questions (making use of question groups).

\ /7 ; \ | | 138 030
X - ,
- > X 036 098

o W v (det =124)
g b R\ eigenvalues:
. ; 156
. 2 - s

The way in which quiz questions are authored is somewhat inspired by WeBWorK.
Pyquiz has been used for a variety of courses, including

« the 2021-2023 summer sessions of Math 54 at UC Berkeley,
o the 2022 summer session of PHILOS W12A at UC Berkeley, and
« the 2022 Winter and Spring offerings of Math 110 and Math 116 at UC Santa Cruz.

0380

