
To formalized mathematics and back
with the Lean theorem prover

Kyle Miller
University of California, Santa Cruz

UCSC CSE Colloquium
24 January, 2024

I am interested in creating software tools for
mathematicians, computer scientists, and students.

Idea:

We can leverage formalization in novel ways to
design and develop useful tools.

● Formalization
● Informalization
● Knots and algorithms
● The future

Software correctness is essential

Computer systems are integrated into much of the modern world.

Software defects are frequent.

Defects can lead to loss of property or loss of life.

Aerospace

Ariane 5 test launch in 1996:

Invalid data conversion led to
shutdown of inertial navigation system
and destruction of launch vehicle.

$370 million

Medicine

1985-87: The Therac-25 radiation
therapy machine delivered at least six
overdoses. Two attributed to race
conditions.

Two deaths and at least four injured.

Cybersecurity

2012: OpenSSL had a latent buffer
over-read vulnerability. Discovered and
reported two years later as Heartbleed.

Unknown total impact, estimated at
least $500 million.

Formal methods reduce software defects

Any testing or verification we can do reduces defects.

Gold standard: a full formal verification with a complete specification.

Writing proofs can be costly and takes expertise.

→ →

Reducing costs with Lean

The cost can be brought down with

● computer aid and
● libraries of formalized mathematics

Lean is a programming language and theorem prover, and it can be part of the
solution.

Lean is a programming language

Lean 4 supports functional and imperative paradigms and compiles to C.

Has a sophisticated type system like Coq or Agda.

Supports invariants and proofs, using the same language.

Mathematics itself is amenable to formal methods

A formal logic system is a language along with truth-preserving formal symbolic
manipulations. Examples: first-order logic, type theory.

Formalization hypothesis:

All of mathematics can be represented in a formal logic system.

Mathematics itself is amenable to formal methods

A formal logic system is a language along with truth-preserving formal symbolic
manipulations. Examples: first-order logic, type theory.

Formalization hypothesis:

All of mathematics can be represented in a formal logic system.

Mathematics itself is amenable to formal methods

A formal logic system is a language along with truth-preserving formal symbolic
manipulations. Examples: first-order logic, type theory.

Formalization hypothesis:

All of mathematics can be represented in a formal logic system.

Computer formalization hypothesis:

We can develop tools to write formal proofs at a comfortably high level.

Lean is flexible!

Lean is an interactive theorem prover

Has a similar type theory to Coq or Agda.

Has mathlib, a large library of undergraduate-level mathematics and beyond.

Proofs are “programs”, often constructed with a higher-level tactics language.

Lean is an interactive theorem prover

Has a similar type theory to Coq or Agda.

Has mathlib, a large library of undergraduate-level mathematics and beyond.

Proofs are “programs”, often constructed with a higher-level tactics language.

Elaborator Kernel

Tactic proofs

Goal states

Formal proof

Lean is an interactive theorem prover

Has a similar type theory to Coq or Agda.

Has mathlib, a large library of undergraduate-level mathematics and beyond.

Proofs are “programs”, often constructed with a higher-level tactics language.

Elaborator Kernel

Tactic proofs

Goal states

Formal proof

● Formalization
● Informalization
● Knots and algorithms
● The future

English Lean

formalization

English Lean

formalization

informalization

We realized this arrow
was missing!

Patrick Massot, Université Paris-Saclay

Textbooks lack context
From Rudin, Principles of Mathematical Analysis:

Why are we choosing an x?
What is the current goal?

Textbooks lack context
From Rudin, Principles of Mathematical Analysis:

What if the document could show this context?

Textbooks lack context
From Rudin, Principles of Mathematical Analysis:

Textbooks show only one level of detail
From Rudin, Principles of Mathematical Analysis:

Why can we deduce this fact?

Textbooks show only one level of detail
From Rudin, Principles of Mathematical Analysis:

Imagine clicking a ⊕ and seeing
further proof.

To go arbitrarily deep,
we need a formalized proof!

Textbooks show only one level of detail
From Rudin, Principles of Mathematical Analysis:

A structured proof is a proof written to make the logical structure evident.

from my Math 110 lectures from my personal notes

A formalized proof is the exemplary structured proof.

However, it is not human readable on its own.

Informalization for interactive structured proofs

Such a document could answer any question
you have about the proof.

But authoring these by hand is a chore.

Mathlib is a large library of formalized mathematics

73k definitions
135k theorems

Contains undergraduate, graduate, and
even some research level mathematics.

Can all of mathematics
be formalized in a
unified, cohesive library?

Hall’s marriage theorem in mathlib [Gusakov–Mehta–Miller 2021]

Informalization for accessible formal proof libraries

●

●

This takes less specialized training to read!

Autoformalization

An autoformalization system automatically translates informal documents into a
machine-checkable formalization.

Large Language Models (LLMs) are being applied to this problem.

Example: Math competition problem statements to formal specifications
[Wu–Jiang–Li–Rabe–Staats–Jamnik–Szegedy 2022]

Observation: formalization does not lead to training pairs.

Papers are too informal.

They have to be transformed and expanded.

The formalization might have no obvious connection to structure of paper.

Training data is scarce

Formal blueprints

A formal blueprint is an design document for a formalization project.

It contains a plan (in natural language) of each theorem and definition that will be in
the formalization.

Creating a formal blueprint takes significant effort and domain knowledge.

Formalizing from the blueprint takes only general knowledge.

Paper Formal blueprint Lean

From the formal blueprint for
Polynomial Freiman-Ruzsa (PFR) Conjecture
project, led by Terence Tao

Informalization naturally yields a formal blueprint.

We could use it to generate two sets of pairs from arbitrary Lean code.

● Formal blueprint & Lean
● Paper & formal blueprint

Autoformalizers could train for each translation task independently.

Informalization for training data for autoformalization

Paper Formal blueprint Lean

informalization

How to informalize

I developed a prototype auto-informalizer.

Input: a Lean 4 module

Output: an interactive document (HTML)

Users write extensions to translate concepts to English.
Currently extensions focus on topology.

Principle: output that is not wrong

Right

Not wrong

Wrong

Principle: output that is not wrong

Ideally, we output correct informal proofs.

Ambiguity, omissions, lack of clarity: these are bugs, but not wrong.

Informalizer uses symbolic AI principles, known as “good old-fashioned AI”.

We can have precise understanding of the informalization, and fix it as needed.

LLMs: output is not generally not wrong

We could apply a large language model (LLM) to the informalization problem.

However:

● While LLMs easily produce informal-looking text, it can be wrong.
● More training and better prompting, decrease probabilities, not eliminate.
● LLMs struggle with logical reasoning.

Consecutive responses with the same prompt, all different

Let’s look at a demo

General architecture

Lean print_proof
frontend

Expr → LaTeX
LeanTeX

TacticTree inference

Entity explainers Proposition
explainers

Tactic explainers Proof term
decompilers

Explanation
webapp

Theorem explainer

From Bourbaki, Topologie Générale:

Ontologies

In AI, an ontology is a formal system that models knowledge about a domain:

concepts, properties, and relations

Ontologies are the foundation for reasoning and inference.

Engineering an ontology takes detecting un-represented knowledge and modifying
the model to represent it.

Lean and English

Lean 4 has expressions, declarations, metavariables, local contexts, tactic states,
tactics, and so on.

To translate to English, we need

● an ontology compatible with (a subset of) common practice mathematical
language and

● a mapping from the Lean 4 ontology to the English ontology.

The better the ontology, the more natural the output we can produce.

An ontology for theorem-style paragraphs

Entity
id
name

Noun
kind
article
text
plural text
inline text
plural inline text

Noun type
text
plural text

Adjective
kind
article
text

Accessory
kind
text

*

*

?

adj.art.art. noun noun

Entity X Entity Y

noun nounadj.art. art.type

Entity fEntity A

Entity construction

For each local variable,

Find and run a handler that applies to the variable.

Handlers generally

Decide what the local variable is about.

Examples: (T : Type) is about T (h : U ∈ Nhd x) is about U

Looks for or creates an entity entry, taking into account dependencies.

Adds/alters the Noun or attaches an Adjective or Accessory, as appropriate.

The parameter handlers are currently crafted by hand

“Let entityName [: noun.type] be article adjectives noun.text with accessories.”

Let n be a natural number.

Let f : X → Y be an injective function.

“For all adjectives noun.inlineText with accessories, …”

For all finite types T with decidable equality, …

Basic grammatical construction

A simple calculation: merging

If consecutive entities have compatible data, we can merge their introductions into
a single sentence.

noun nounadj.typetype

Entity βEntity α Entity γ Entity f Entity g

Propositions to English

Grammatical agreement

With English, there are two main grammatical features that need to be observed:

● Plurality
○ Verbs: is/are
○ Nouns: function/functions

● Articles
○ A function
○ An injective function

We avoid tenses, but we do make use of the subjunctive for “to be”:

● Let n be a natural number.
● Suppose n is a natural number.

Describing proofs

The next big part: representing proofs

Main elements:

● Deducing tactic proof structure
● Tactic describers
● Proof term decompiler

InfoTrees

Original purpose: providing all the information one sees in the VS Code IDE,
including mouseover text, jump-to-definition, and the Infoview.

Infoview (goal states)

Excerpt of an InfoTree

…

Tactic describers

These consume these trees and create hierarchical explanations.

Tactics are semi-hierarchical

We want to recover the true proof tree.

Many tactics produce side goals that are solved for later.

Tactic describers may elect to collect side goals.

Explanations

The output of a tactic describer is a piece of a structured document. These support:

● Block indentation
● Paragraph breaks
● Text with a (+)/(-) to replace some text with other text
● Clickable words that show additional text
● Tooltips
● Goal states
● Multiline equations

There is a JavaScript webapp that renders Explanations.

This webapp could be used for other purposes.

Proof term explanations

For a number of tactics, we decompile the proof term it generates into an
equivalent sequence of simpler tactics and then compile that into English.

Reason 1. We want to avoid recapitulating tactic implementations.

Reason 2. The “Laziness Principle”: a Lean author writes primarily to be
understood by the computer.

Reason 3. Not everything that a computer wants to see is similarly desired by a
human reader.

This is used by exact, apply, refine, and many others.

Proof term explanations, a decompiler

Local context + expected type + proof term

↓

Synthesized tactic trees, with synthesized intermediate goal states

↓

Rendered Explanations

Example: if introducing a variable requires unfolding a goal, there is an explainer
inserting an intermediate step: “by definition of injectivity, …”

LeanTeX

Ongoing work and investigations

As we saw, we have a working informalizer!

There is plenty more to do, and plenty more ontology engineering to consider.

● Formalization
● Informalization
● Knots and algorithms
● The future

Knots

In DNA:

Knots

In physics:

Knots

In life:

Knots

In mathematics:

→

Definition. A knot is a closed loop in 3D space.

Classifying knots

What are all the knots?

How can we distinguish different knots?

Classifying knots

What are all the knots?

How can we distinguish different knots?

What are all the knots?

How can we distinguish different knots?

Classifying knots

“Papers contain knot diagrams, and we manipulate knots on chalkboards.
Is there software to read knot diagrams from photographs?”

– Question in Perspectives on Dehn Surgery at ICERM 2019

There was no such software,
but I had an idea for an algorithm.

There was no such software,
but I had an idea for an algorithm.

This led to KnotFolio
https://knotfol.io/

Image Diagram Invariants Identification

PD[Xm[2,7,3,8], Xm[6,1,7,2],
 Xm[3,12,4,13], Xm[11,4,12,5],
 Xp[13,9,14,8], Xm[16,5,1,6],
 Xp[9,15,10,14], Xp[15,11,16,10]]

V1 = −t + 2 − t−1 + 2 t−2 − t−3 + t−4 − t−5

Δ0(t) = 1 − 2 t + 3 t2 − 2 t3 + t4

Algorithms in KnotFolio

I wrote all the algorithms myself in JavaScript.

● Jones polynomial
● Alexander polynomial and Conway potential
● Canonical Seifert genus
● Seifert form
● Turaev genus
● Crossing number, writhe, bridge number counting, linking matrix

“Can KnotFolio help us identify virtual knots?”

“Can KnotFolio help us identify virtual knots?”

Yes, but the Jones and Alexander polynomials aren’t enough.

There are many virtual knots, and coincidences.

Crossings Count

0 1

1 0

2 1

3 7

4 108

5 2448

Furthermore, the n-cabled Jones polynomial of a virtual knot with
c crossings is by definition a polynomial with 2nc² terms.

For example, the 3-cabled Jones polynomial of a 5-crossing
virtual knot has 35,184,372,088,832 terms.

Even with tricks, it is too slow to run in an interactive application.

Arrow polynomials

I discovered a way to compute arrow polynomials of virtual knots,
which are a refinement of Jones polynomials. [Miller 2023]

I implemented the algorithms once in JavaScript, and once again in Lean.

I did not formally verify the Lean code, however I did include invariants.

Evaluation

The 1-, 2-, and 3-cabled arrow polynomials of all virtual knots up to 5 crossings took
2.8 days of computer time with the Lean implementation.

Improvements

Now KnotFolio can uniquely identify 2543 out of 2565 small virtual knots.

While having two implementations yielding the same results is nice,
ideally we would have a formally verified algorithm!

● Formalization
● Informalization
● Knots and algorithms
● The future

Informalization

● Write interactive textbooks and evaluate their use pedagogically
○ Target: introduction to proofs and discrete mathematics courses at UCSC
○ Test out UI concepts for navigation and surfacing salient details
○ Plan: obtain grants to support curriculum development

Informalization

● Write interactive textbooks and evaluate their use pedagogically
○ Target: introduction to proofs and discrete mathematics courses at UCSC
○ Test out UI concepts for navigation and surfacing salient details
○ Plan: obtain grants to support curriculum development

● Integrate into the mathlib documentation
○ Solve scaling issues (need explainers for the 73955 definitions and 135484 theorems)

Informalization

● Write interactive textbooks and evaluate their use pedagogically
○ Target: introduction to proofs and discrete mathematics courses at UCSC
○ Test out UI concepts for navigation and surfacing salient details
○ Plan: obtain grants to support curriculum development

● Integrate into the mathlib documentation
○ Solve scaling issues (need explainers for the 73955 definitions and 135484 theorems)

● Collaborate with AI researchers
○ Autoformalization researchers send frequent inquiries about the prototype
○ Explore ML augmentations to informalization (style, level of detail, etc.)

Informalization

● Write interactive textbooks and evaluate their use pedagogically
○ Target: introduction to proofs and discrete mathematics courses at UCSC
○ Test out UI concepts for navigation and surfacing salient details
○ Plan: obtain grants to support curriculum development

● Integrate into the mathlib documentation
○ Solve scaling issues (need explainers for the 73955 definitions and 135484 theorems)

● Collaborate with AI researchers
○ Autoformalization researchers send frequent inquiries about the prototype
○ Explore ML augmentations to informalization (style, level of detail, etc.)

● Create a correct informalizer
○ Use controlled natural language such as Formal Theory Language (ForTheL)
○ Develop a full ontology for structured proofs
○ Prove that informalizer output is semantically equivalent to original Lean
○ Apply this framework to other domains — element of expert systems

answer “why” with reliable arbitrarily detailed explanations

Formal knot theory

People use my KnotFolio program.

The algorithms are carefully-written JavaScript — they should be formally verified.

Formal knot theory

People use my KnotFolio program.

The algorithms are carefully-written JavaScript — they should be formally verified.

Long term project:

● Formalization of piecewise linear manifolds, 3-manifold topology, 2D and 3D
meshes, normal surface theory, knot theory, skein theory, planar algebras,
quantum topology, etc.

● Verified algorithms for low-dimensional topology, including knot theory.
● Add support to popular software such as SnapPy and Regina to output proof

certificates.

Carrying this out requires one foot in theoretical mathematics and another in CS.

Verified compilation projects

At Swift Navigation in 2015, we developed a compiler for programming with linear
algebra and tensors, to target memory-constrained systems.

with Scott Kovach (Stanford)

Verified compilation projects

At Swift Navigation in 2015, we developed a compiler for programming with linear
algebra and tensors, to target memory-constrained systems.

We are now working on languages for high-level programming with tensors,
probability distributions, associative arrays, and so on, using Lean.

Current project: Design compilation strategies to lower these computations to
efficient kernels, and prove (in Lean) that the transformation is correct.

with Scott Kovach (Stanford)

Last thoughts…

Lean is a versatile (and fun!) language for programming and formalization.

The fruits of formalization go beyond verifying truth.

Let’s enrich education, mathematics, and engineering with these tools!

Kyle Miller, PhD
🌐 https://kmill.github.io/ ✉ kymiller@ucsc.edu

KnotFolio https://knotfol.io/
arrow_poly https://github.com/kmill/arrow_poly
Lean FRO https://lean-fro.org/

More slides

What is Lean?

The Lean theorem prover

Lean is one of the newest interactive theorem provers.

● 1973 Mizar
● 1986 Isabelle
● 1989 Coq
● 1999 Agda
● 2013 Lean 1
● 2021 Lean 4

It was initially developed at Microsoft Research and Carnegie Mellon University by
Leonardo de Moura, Jeremy Avigad, and others.

The Lean theorem prover

● Lean is a functional programming language
● Like Coq, its type theory is based on the Calculus of Inductive Constructions
● Dependent types: argument types may depend on previous arguments
● Every mathematical proposition can be encoded as a type;

Proofs are “programs”! (the Curry–Howard correspondence)
● Unlike Coq or Agda, has proof irrelevance and quotient types
● Its theory is equiconsistent with ZFC plus some inaccessible large cardinals

[Carneiro 2019]

These features together work well for mathematics,
and (partly by accident) mathematicians form a large fraction of Lean users.

Lean 4

● Is a full programming language that is also an interactive theorem prover
○ Much of Lean 4 is written in Lean 4

● Compiles to C
● Can prove theorems in Lean 4 about programs written in Lean 4
● Can write programs in Lean 4 that write programs written in Lean 4

○ For example, tactics are proof-writing programs

● Can extend Lean 4 from within Lean 4
○ Syntax, macros, elaboration rules, tactics, etc.
○ One language for everything!

Lean Focused Research Organization

As of July 2023, the Lean FRO is a nonprofit dedicated to advancing formal
mathematics, tackling scalability, usability, and proof automation.

The Lean FRO has assembled a team to develop Lean.

Its mission includes supporting broad applications including software and hardware
verification and AI research for mathematics and code synthesis.

It is on a five-year mission to become self-sustainable.

Examples

Examples

Examples

Examples

What is mathlib?

Partial mathlib overview

Why Lean? Why not $THEOREM_PROVER?

Lean happens to have a community of research mathematicians surrounding it;
it feels comfortably set-theory-ish to them.

The community formalizes things that are interesting to mathematicians:

● Perfectoid spaces [Buzzard, Commelin, and Massot 2020]
● Scholze’s main theorem of liquid modules [Commelin, et al. 2022]
● The existence of a sphere eversion [Massot, Nash, and Van Doorn 2023]
● The Polynomial Freiman-Ruzsa conjecture [Terence Tao, et al. 2023]

(To be clear, projects by other communities are not uninteresting!)

Why formalize mathematics?

Mathematicians seem not to be so interested in computer verification of proofs –
while mistakes do slip into most papers, they’re often believed to be “minor” since
“the idea is generally right.”

So why go through all this effort?

1. Crystallization of knowledge
2. Compatibility of definitions between papers (like Hales’ Formal Abstracts)
3. To relieve referees from having to verify correctness
4. Preservation of mathematics
5. Formalization can reveal missing mathematics
6. Tautologically, it’s becoming “interesting” to the wider mathematics community

I hear mathematicians outside ITP communities say they think journals will
eventually require formalized proofs. (Will it be the new LaTeX?)

ForTheL and Naproche

There are numerous efforts to make precise human-readable modeling languages.

For example, ForTheL (Formal Theory Language) [Paskevich 2007]
gives a flexible language for first-order logic.

Naproche is a proof assistant using this. [Koepke, et al. 2009]

Naproche implements elaboration of ForTheL.

ChatGPT doesn’t introduce the family of sets t. What recourse do we have?

Example from early 2022

More informalization

Our driving example

From Bourbaki, Topologie Générale:

Example: the proof

This is expanded out to a comparable
level of detail to the Lean code.

Lean proofs can take advantage of the
elaborator being able to fill in details
obvious to a computer, so it’s not
surprising if an English version might
be wordier!

Trivial logic

Mathematicians do not manually curry/uncurry implications/conjunctions

(The wording difference is due to a
limitation in the current ontology.)

Expressions to LaTeX: LeanTeX

We have a Lean.Expr → LaTeX pretty printer.

Basic “impedance mismatch”:

Lean expressions are trees, but traditional notation is a 2D layout.

Precedence levels are not sufficient to model 2D layout properly.

So far this has been enough:

?

Some LaTeX pretty printers

I am interested in creating software tools for
mathematics, computer science, and education

