
From Lean to
Natural Language and
Back

Interfaces for Formal Proofs

Kyle Miller
University of California, Santa Cruz2025 ICERM Autoformalization for the Working Mathematician

Overview

● Musings on Mathematics and Proof
● Using natural language as an interface

○ InformalLean
○ Verbose Lean

● The Future

What is mathematics anyway?

We ought to understand what we’re talking about if we want to talk about interfaces
between things.

What is mathematics anyway?

A pure-math-biased answer:

Mathematics is what mathematicians do,
and mathematicians study structures in mathematics.

Germ theory of mathematics:

● Mathematical ideas live in mathematician ‘hosts’.
● Mathematics spreads through communities via contact (meetings, talks, etc.),

provided the ideas are interesting and skepticism-resistant.
● Papers and textbooks contain the dormant ‘spores’ of ideas.
● Is an idea alive if there’s no one still aware of it?

What is mathematics anyway?

A pedagogical/Greek answer:

Mathematics is what one learns in mathematics courses.
(μαθήματα (mathēmata) means “lessons”)

● All structured learning once was under the umbrella of mathematics.
● In any case, Euclid’s Elements was very influential.

“Let’s do more of the way he does geometry!”

What is mathematics anyway?

A Dutch answer:

Mathematics is what one can know for sure.
(wiskunde, coined by Simon Stevins, 16th century)

● With this framing, all that’s left are the things that leave no room for doubt.
● We can see the role of proof in this. Let’s say

A document P is a proof for mathematician M of theorem T
if after M reads P then M is sure that T is true.

Plus, the Dutch invented Automath (De Bruijn, 1967), the primordial proof assistant.
(Introduced the Curry–Howard–de Bruijn correspondence, dependent types, … (!))

Uses of proofs

Proofs serve different purposes to different audiences:

● Mathematicians
○ Propagation of new ideas and structural observations.
○ Support for claims of solving open problems.

● Students
○ Models from which to learn the language and practices of mathematics, for cultural integration.

● Users (might be other mathematicians)
○ To be able to “black box” a result, given that there’s a proof that’s (presumably) been checked.

● Engineers
○ A theorem is a specification, a proof is good so long as it exists and is maintainable.

Formal proofs

It’s possible to write proofs where one can know for sure that a reasonable person
who reads it will know for sure that the theorem is true. (Thanks logicians!)

Strict definition of reasonable: one who accepts a given set of principles of logical reasoning.

These proofs are checkable by their formal structure alone.

Large-scale experiments give strong evidence of a “formalization hypothesis”,
that all the objects of mathematical knowledge can be rendered formally.

Tension:

Proofs that transfer
intuition / techniques

Proofs that transfer
mere certainty

Informal Formal

Pre-mechanization of proofs

Classic “compilation” path for checking

Proof

Ideas! Intuitions!

Filling in
details!

New
understanding!

Checked

Post-mechanization of proofs

Modern “compilation” path for checking

Proof Filling in
minutiae! Checked

Post-mechanization of proofs

Modern “compilation” path for checking

Proof

?

Filling in
minutiae! Checked

Humans & Machines: some questions

● Can we expect to write proofs that satisfy both humans and machines?
○ Machines can tirelessly check minute details, but don’t currently understand the big picture.
○ Humans can see the big picture and can be convinced that there must be a way to fill in the

details, but too many details can be overwhelming.

● What about satisfying different human audiences?
○ We already explain things differently for a subfield, the wider community, and the classroom.
○ Is there a future where one source text can be used to generate audience-appropriate

treatments of a proof? Or of a whole theory? Correctly?

● To what extent can machine-checked proofs be used in teaching?
○ Mathematicians don’t run formal proof checkers in their heads, so teaching how to prove things

in Lean likely isn’t teaching mathematical thought itself.
○ However, it surely can play a role in Tao’s pre-rigorous / rigorous / post-rigorous progression.

Exploration: natural language as an interface

Mathematics is traditionally communicated in a (dialect of a) natural language.

An old idea: natural language programming (e.g. COBOL).
Using controlled natural language to meet the user where they are at.
This is not what I am talking about today exactly.

Closer example: Inform 7, for making parser-based interactive fiction.
Graham Nelson explored “what if writing the games was like playing them?”

For math:
What are ways to engage with formal proofs using the common language?

Natural Language for Reading Proofs

Patrick Massot
Université Paris-Saclay

English Lean

formalization

English Lean

formalization

informalization

Textbooks lack context
From Rudin, Principles of Mathematical Analysis:

Why are we choosing an x?
What is the current goal?

Textbooks lack context
From Rudin, Principles of Mathematical Analysis:

What if the document could show this context?

Textbooks lack context
From Rudin, Principles of Mathematical Analysis:

Textbooks show only one level of detail
From Rudin, Principles of Mathematical Analysis:

Why can we deduce this fact?

Textbooks show only one level of detail
From Rudin, Principles of Mathematical Analysis:

Imagine clicking a ⊕ and seeing
further proof.

To go arbitrarily deep,
we need a formalized proof!

Textbooks show only one level of detail
From Rudin, Principles of Mathematical Analysis:

A structured proof is a proof written to make the logical structure evident.

A formalized proof is the exemplary structured proof.

However, they are usually not human readable on their own.

Informalization for interactive structured proofs

Such a document could answer any question
you have about the proof.

Authoring these by hand is at least as hard
as writing a formal proof!

Mathlib is a large library of formalized mathematics

103k definitions
207k theorems

Contains undergraduate, graduate, and
even some research level mathematics.

Hall’s marriage theorem in mathlib [Gusakov–Mehta–Miller 2021]

Informalization for accessible formal proof libraries

●

●

This takes less specialized training to read!

Autoformalization

An autoformalization system automatically translates informal documents into a
machine-checkable formalization.

As we know, Large Language Models (LLMs) are being applied to this problem.

Observation: formalization does not lead to training pairs.

Papers are too informal.

They have to be transformed and expanded.

The formalization might have no obvious connection to structure of the source text.

Training data is scarce

Blueprints

A blueprint is an design document for a formalization project.

It contains a plan (in natural language) of each theorem and definition that will be in
the formalization.

Creating a formal blueprint takes significant effort and domain knowledge.

Formalizing from the blueprint takes only general knowledge.

Paper Blueprint Lean

From the formal blueprint for
Polynomial Freiman-Ruzsa (PFR) Conjecture
project, led by Terence Tao

Informalization naturally yields a blueprint.

We could use it to generate two sets of pairs from arbitrary Lean code.

● Blueprint & Lean
● Paper & blueprint

Autoformalizers could train for each translation task independently.

Informalization for training data for autoformalization

Paper Blueprint Lean

informalization

How to informalize

Patrick Massot and I developed a prototype auto-informalizer.

Input: a Lean 4 module

Output: an interactive document (HTML)

Users write extensions to translate concepts to English.
Currently extensions focus on topology.

Principle: output that is not wrong

Right

Not wrong

Wrong

Principle: output that is not wrong

Ideally, we output correct informal proofs.

Ambiguity, omissions, lack of clarity: these are bugs, but not wrong.

Informalizer uses symbolic AI principles, known as “good old-fashioned AI”.

We can have precise understanding of the informalization, and fix it as needed.

LLMs: output is not generally not wrong

We could apply a large language model (LLM) to the informalization problem.

However:

● While LLMs easily produce informal-looking text, it can be wrong.
● More training and better prompting, decreases probabilities, doesn’t eliminate.
● LLMs struggle with logical reasoning. (It’s gotten significantly better!)

○ “Sorry, you are correct that 8 is not odd. However, since 8 is odd, …”

ChatGPT 4o

Demo

General architecture

Lean print_proof
frontend

Expr → LaTeX
LeanTeX

TacticTree inference

Entity explainers Proposition
explainers

Tactic explainers Proof term
decompilers

Explanation
webapp

Theorem explainer

From Bourbaki, Topologie Générale:

Ontologies

In AI, an ontology is a formal system that models knowledge about a domain:

concepts, properties, and relations

Ontologies are the foundation for reasoning and inference.

Lean and English

Lean 4 has expressions, declarations, metavariables, local contexts, tactic states,
tactics, and so on. (Lean 4 is written in Lean 4, and this is all accessible to us!)

To translate to English, we need

● an ontology compatible with (a subset of) common practice mathematical
language, and

● a mapping from the Lean 4 ontology to the English ontology.

The better the ontology, the more natural the output we can produce.

An ontology for theorem-style paragraphs

Entity
id
name

Noun
kind
article
text
plural text
inline text
plural inline text

Noun type
text
plural text

Adjective
kind
article
text

Accessory
kind
text

*

*

?

adj.art.art. noun noun

Entity X Entity Y

noun nounadj.art. art.type

Entity fEntity A

Entity construction

The parameter handlers are currently crafted by hand

“Let entityName [: noun.type] be article adjectives noun.text with accessories.”

Let n be a natural number.

Let f : X → Y be an injective function.

“For all adjectives noun.inlineText with accessories, …”

For all finite types T with decidable equality, …

Basic grammatical construction

A simple calculation: merging

If consecutive entities have compatible data, we can merge their introductions into
a single sentence.

noun nounadj.typetype

Entity βEntity α Entity γ Entity f Entity g

Propositions to English

Small wrinkle: grammatical agreement

With English, there are two main grammatical features that need to be observed:

● Plurality
○ Verbs: is/are
○ Nouns: function/functions

● Articles
○ A function
○ An injective function

We get to avoid tenses, but we do make use of the subjunctive for “to be”:

● Let n be a natural number.
● Suppose n is a natural number.

Describing proofs

The next big part: representing proofs

Main elements:

● Deducing tactic proof structure
● Tactic describers
● Proof term decompiler

InfoTrees

Original purpose: providing all the information one sees in the VS Code IDE,
including mouseover text, jump-to-definition, and the Infoview.

Infoview (goal states)

Excerpt of InfoTree data

…

Hovering on

Tactic describers

These consume these trees and create hierarchical explanations.

Tactics are semi-hierarchical

We want to recover the true proof tree.

Many tactics produce side goals that are solved for later.

Tactic describers may elect to collect side goals.

Explanations

The output of a tactic describer is a piece of a structured document. These support:

● Block indentation, paragraph breaks, tooltips
● Expansion widgets and highlights that cross paragraph boundaries
● Goal states
● Multiline equations

There is a JavaScript renderer for Explanations.

This is not specialized to LeanInformal.

Proof term explanations

For many tactics, we decompile its generated proof term into an equivalent
sequence of simpler tactics, then compile that into English.

Reason 1. We want to avoid recapitulating tactic implementations.

Reason 2. Lean files are written primarily to be understood by Lean.

Reason 3. Not everything that a computer wants to see is similarly desired by a
human reader.

This is used by exact, apply, refine, and others.

LeanTeX https://github.com/kmill/LeanTeX-mathlib

InformalLean: Ongoing and future work

● Nailing down a spec for the various kinds of describers.
○ Once that’s done, we’ll release InformalLean.
○ We’ll need help getting mathlib coverage!

● More sophisticated interactions.
○ Communicating information about typeclass instances.
○ Answering queries (“where is this hypothesis used”)

● Using InformalLean in the classroom.
○ Do interactive proofs improve learning outcomes?
○ Or is the struggle to read a book like Rudin essential to the process?

● Generating that synthetic AI training data!

Natural Language for Writing Proofs

Verbose Lean [Massot 2024]

https://github.com/PatrickMassot/verbose-lean4

Motivation

● It’s for learning to read and write traditional proofs.
○ Meant to be an aid while developing a paper proof.
○ Students can transfer their finished proofs to paper with minor editing.

● It is not meant to be a controlled natural language interface for Lean.
○ Learning to formalize is limited by formalization knowledge and skill, not surface syntax.
○ Controlled natural language has a worse “guess the grammar” problem.

● Design goals:
○ Giving clear proof states (essential for learning how to write proofs, but rarely provided!)
○ Training students how to apply the obvious goal-motivated proof steps.

○ Training the difference between free and bound variables.
○ Being clear on stating / proving / using

■ Professionals blur the distinction but “know what they’re doing” so it is “ok”.
■ That is not a good model for students learning to be rigorous.

○ Localizable to students’ native language. (Comes with English and French syntax.)

Routine steps Risky steps

Rough architecture

Suggestion mechanism

Controlled natural language syntax

Tactics for paper proof granularity

The Lean 4 metaprogramming interface

Demo

Other systems

Waterproof for Coq. Very similar, with similar pedagogical goals.

Other systems

Naproche. Aims to be a natural language proof language.

Uses Formal Theory Language (ForTheL), translates its custom logic to Isabelle, and
uses a “mile marker” declarative approach to proving, relying on a high-powered
tactic to fill in the arguments.

Other systems

Mizar. Uses a wordy/friendly grammar. Has the ability to output to natural language,
used by the Journal of Formalized Mathematics.

The Future

The Future

What are other directions?

● What kinds of mathematical knowledge aren’t being captured by formalization.
Can they be?

● Use LLMs to drive stylistic choices to make high quality and accurate
informalizations?

● Would a formally verified informalization tool have any applications?
● For natural language translations for undergraduate audiences, automatic

specialization to appropriate settings? (e.g. “modules” -> “vector spaces”)
● With classical NLP, we can feel responsible for the translations, even ones we

have not reviewed personally. When can ML translations be trustworthy
enough to not need human review? Maybe this is audience-dependent.

● Less stringent proof checkers for less formal proofs?
(“Interactive Plausibility Assistants”?)

