From Lean to
Natural Language and
Back

Interfaces for Formal Proofs

Kyle Miller
2025 ICERM Autoformalization for the Working Mathematician University of California, Santa Cruz

Overview

e Musings on Mathematics and Proof

e Using natural language as an interface
o InformalLean
o Verbose Lean

e The Future

What is mathematics anyway?

We ought to understand what we’re talking about if we want to talk about interfaces
between things.

What is mathematics anyway?

A pure-math-biased answer:

Mathematics is what mathematicians do,
and mathematicians study structures in mathematics.

Germ theory of mathematics:

e Mathematical ideas live in mathematician ‘hosts.’.

e Mathematics spreads through communities via contact (meetings, talks, etc.),
provided the ideas are interesting and skepticism-resistant.

e Papers and textbooks contain the dormant ‘spores’ of ideas.

e /s anidea alive if there’s no one still aware of it?

What is mathematics anyway?

A pedagogical/Greek answer:

Mathematics is what one learns in mathematics courses.
(uabnuata (mathémata) means “lessons”)

e All structured learning once was under the umbrella of mathematics.
e |n any case, Euclid’s Elements was very influential.
“Let’'s do more of the way he does geometry!”

What is mathematics anyway?

A Dutch answer:

Mathematics is what one can know for sure.
(wiskunde, coined by Simon Stevins, 16th century)

e With this framing, all that’s left are the things that leave no room for doubt.
e We can see the role of proof in this. Let’s say

A document P is a proof for mathematician M of theorem T
if after M reads P then M is sure that T is true.

Plus, the Dutch invented Automath (De Bruijn, 1967), the primordial proof assistant.
(Introduced the Curry—Howard—de Bruijn correspondence, dependent types, ... (!))

Uses of proofs

Proofs serve different purposes to different audiences:

e Mathematicians
o Propagation of new ideas and structural observations.
o Support for claims of solving open problems.

e Students

o Models from which to learn the language and practices of mathematics, for cultural integration.

e Users (might be other mathematicians)
o To be able to “black box” a result, given that there’s a proof that’s (presumably) been checked.

e Engineers
o Atheorem is a specification, a proof is good so long as it exists and is maintainable.

Formal proofs

It's possible to write proofs where one can know for sure that a reasonable person

who reads it will know for sure that the theorem is true. (Thanks logicians!)
Strict definition of reasonable: one who accepts a given set of principles of logical reasoning.

These proofs are checkable by their formal structure alone.

Large-scale experiments give strong evidence of a “formalization hypothesis”,
that all the objects of mathematical knowledge can be rendered formally.

Tension:

Proofs that transfer Proofs that transfer
intuition / techniques mere certainty

<€ >

Informal Formal

Pre-mechanization of proofs

Classic “compilation” path for checking

|

Post-mechanization of proofs

Modern “compilation” path for checking

B N

Post-mechanization of proofs

Modern “compilation” path for checking

| VIN

Humans & Machines: some questions

e Can we expect to write proofs that satisfy both humans and machines?
o Machines can tirelessly check minute details, but don’t currently understand the big picture.
o Humans can see the big picture and can be convinced that there must be a way to fill in the
details, but too many details can be overwhelming.

e What about satisfying different human audiences?

o We already explain things differently for a subfield, the wider community, and the classroom.
o Isthere a future where one source text can be used to generate audience-appropriate
treatments of a proof? Or of a whole theory? Correctly?

e To what extent can machine-checked proofs be used in teaching?

o Mathematicians don’t run formal proof checkers in their heads, so teaching how to prove things
in Lean likely isn’t teaching mathematical thought itself.
o However, it surely can play a role in Tao’s pre-rigorous / rigorous / post-rigorous progression.

Exploration: natural language as an interface

Mathematics is traditionally communicated in a (dialect of a) natural language.

An old idea: natural language programming (e.g. COBOL).
Using controlled natural language to meet the user where they are at.
This is not what | am talking about today exactly.

Closer example: Inform 7, for making parser-based interactive fiction.
Graham Nelson explored “what if writing the games was like playing them?”

For math:
What are ways to engage with formal proofs using the common language?

Natural Language for Reading Proofs

Patrick Massot
Université Paris-Saclay

English

formalization

English

formalization

informalization

Textbooks lack context

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E€ is closed. Choose x€ E. Then x ¢ E, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Textbooks lack context

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x € E®Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Why are we choosing an x?
What is the current goal?

Textbooks lack context

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x € E®Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° n N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Current proof state:
X is a topological space
What if the document could show this context? E is a subset of X

E*€is closed

z 1s an element of F

Goal: z € E°

Textbooks show only one level of detalil

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x€ E. Then x ¢ E°, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Textbooks show only one level of detalil

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x€ E. Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

Why can we deduce this fact?

Textbooks show only one level of detalil

2.23 Theorem A set E is open if and only if its complement is closed.

Proof First, suppose E° is closed. Choose x€ E. Then x ¢ E¢, and x is
not a limit point of E°. Hence there exists a neighborhood N of x such
that E° N N is empty, that is, N < E. Thus x is an interior point of E,
and E is open.

Next, suppose E is open. Let x be a limit point of E. Then every
neighborhood of x contains a point of E°, so that x is not an interior point
of E. Since E is open, this means that x € E. It follows that E° is closed.

prove E C E°. < Let x be an element of E. One can see that x ¢ E°.

Assume that z is a limit point of E°. We see x € E°. Using this and further pro of.
our assumption that z ¢ E° we are done.
One can obtain an open neighborhood N of such that N N E¢ = &. To go a rbitrari Iy deep’
we need a formalized proof!

A structured proofis a proof written to make the logical structure evident.

Def The reakest cowmwown divisor & of o omd Yo 9 fhe %{“‘*‘7‘
i element of io\el \ Al amd L\bg , Y exdsks .
Weitken o (o, %) or O\’LALG‘h\.

TkW\ Sut‘;pose OL,)Q(:l omd o #F0 or b#0. Thew (a,\o) ests
T omd s posikive.

Pf Without loss of qenerohly, a 30 (by acrb € weed).

Lek S=§ael | Ao omd dlbi.
Clowm: 1 e S.
1¢S5 & Ll omd Llb

Herct G 15 nowemply. .

Uoinn = for ol €S, p&\q,d’ TN
Suﬂ’“s‘ eed . Thew ela, o theve 1 kel swe

Lok K=HeN. Them el =lal. o

Cose T) =0, Then ypc0, omd o=ke=0. Cowtvodickiou!!

Case T Tuene is cedin tat =k, Thewn Jd =k lel = kel e\,

Haws el ¢ ol Yoy def. ‘
Wove 3(\3_\,’—',\&\7) »\ov\e.w\'k,. Aa"‘\’“"‘j lewwna. for \.Je\l-ordeﬂvﬁj

s by o Sreod(es'\' elewmeunt d. By second Aaiun, de§ s O"%ﬁ'

oo omd 1b=b so helds la,J)e(.

Lemma 2.2.8

The element a € F is a root of the nonzero polynomial f(x) in F iff 2 — a is a factor of f(x). Asa
consequence, the number of roots of a polynomial is no more than its degree.

Proof 2.29

1.Ifa € Fisarootof f,then z — a is a factor of f.
1. Suppose a € F is aroot of f.
2. Let g, r satisfy f(x) = g(z)(z — a) + r(z) per the division algorithm.
3.0 = £(a) = g(a)(a — a) +r(a) = r(a)
4. Since degr < 1,7(z) =0
5. Hence f(z) = g(z)(z — a).
2.Ifa € F and ¢ — a is a factor of F', then a is a root of F'.
1. Let g be such that f(z) = g(z)(z — a)
2. f(a) = q(a)(a—a) =0
3. The number of roots of f is no more than the degree of f.

1.Casel.deg f=0
1. Since f is non-zero, it has no roots.

CaseIl.deg f >0
1.Casel. fhasaroota € F
1. Then f has (z — a) as a factor.
2. Let g be such that f(z) = g(z)(z — a).
3.degq < deg f. By induction, g has at most deg g roots.
4. Thus f has at most 1 + degq = deg f roots.

Case II. f does not have a root in F'
1. fhas 0 < deg f roots.

A formalized proof is the exemplary structured proof.

theorem rudin {X : Typex} [TopologicalSpace X] (E : Set X) :
IsOpen E o« IsClosed Ec := by
constructor
+ intro hop
apply isClosed_iff_clusterPt'.2
intro x hx
have hx' : x ¢ interior E := by
intro hi
rcases mem_interior.1l hi with (U, hU, hop, hm)
rcases hx U (IsOpen.mem_nhds hop hm) hop with (y, hy)
exact absurd (hU (Set.mem_of_mem_inter_left hy))

((Set.mem_compl_iff _ _).1 <| Set.mem_of_mem_inter_right hy)
have hintc := Set.compl_subset_compl_of_subset (subset_interior_iff_isOpen.2 hop)
exact hintc hx'
+ intro hc
apply subset_interior_iff_isOpen.1
intro x hx
have hx' : x € Ec := Set.not_mem_compl_iff.mpr hx
have hnc : -ClusterPt' x Ec := by
intro h

exact absurd (isClosed_iff_clusterPt'.1 hc _ h) hx'
rcases not_clusterPt'_principal_iff.1 hnc with (N, hN, hop, he)
apply mem_interior.2
use N, Set.diff_eq_empty.mp he, hop
exact mem_of_mem_nhds hN

However, they are usually not human readable on their own.

Informalization for interactive structured proofs

Theorem. Let X be a topological space. Let E be a subset of X. Then E is open if and only if E° is closed.

Proof. > By definition it suffices (1) to prove that if E is open then E€ is closed and (2) to prove that if E€is
closed then E is open.

1. ©Claim: if E is open then E° is closed. 2. ©Claim: if E€is closed then E is open.
Suppose FE is open. < Using isClosed_iff clusterPt' it suffices to prove for all cluster points a of Assume that E°is closed. <> Using subset_interior_iff isOpen it suffices to prove E C E°. © Let
E¢ a € E°. © Let z be a cluster point of E°. z be an element of E.
Claim: z ¢ E°. Claim: z ¢ E°.
Assume that z € E°. Using our assumption that z € E°, mem_interior proves one can Using our assumption that & € E with Set.not_mem_compl_iff we are done.
obtain an open subset U of E such that x € U. We see for all open neighborhoods U’ of z,
! C 3.
U N Eis nonempty. Claim: z is not a cluster point of E*.
Claim: U is a neighborhood of z. Assume that z is a cluster point of E°.
Using our assumption that U is open and our assumption that z € U with IsOpen.mem_nhds Claim: z € E°.
we are done.

Claim: for all cluster points a of E, a € E°.

Using the above claim and our assumption that U is open, a preceding claim proves one can obtain g onsamumption e B%s dosed withistiosed, P cisefbo wes dme.

an element y of U N E°.
Using our assumption that z is a cluster point of E° with a preceding claim we are done.

Claim: y € E.
Using the above claim and our assumption that z ¢ E° we are done.

We see y € U. Using the above claim with our assumption we are done. L
Using our assumption that z is not a cluster point of E*, not_clusterPt'_principal_iff proves one

Claim: y ¢ E. can obtain an open neighborhood N of z such that N N E€ = @. > Using mem_interior it suffices to

We see y € E°. Using the above claim with Set.mem_compl_iff we are done. prove there exists an open subset ¢ of E such that z € ¢.

Using the above claims we are done. Claim: N C E.
We see N \ E = @. Using the above claim with Set.diff eq empty we obtain N C E.

Claim: (E°)° C EF. Using the above claim, IV and our assumption that IV is open it suffices to prove z € N. < Using our

- assumption that N is a neighborhood of z with mem_of mem_nhds we are done.

Claim: E C E°.

Using our assumption that F is open with subset_interior_iff isOpen we are done.

Using the above claim with Set.compl_subset_compl_of subset we are done. S u C h a d O C u m e n t CO u I d a n Swe r a ny q u es ti O n
Clim: = € (Y- you have about the proof.

1t suffices to prove that z ¢ E°, and by assumption we - are done.

Using the above claim with our assumption we are done. Authoring ‘these by hand iS a‘t |eas‘t as hard
as writing a formal proof!

ized mathematics

ibrary of formal

Mathlib is a large |

initions

103k def

207k theorems

, graduate, and

even some research level mathematics.

Contains undergraduate

Number of lines

I athics [mathiib4

2000000

o
(=]
o
o
o
]
=

1600000

1400000

1200000

1000000

800000

600000

400000

200000

Hall's marriage theorem in mathlib [Gusakov—Mehta—Miller 2021]

theorem Finset.all_card_le_biUnion_card_iff_exists_injective
{1 : Type u} {a : Type v} [DecidableEq a] (t : 1 » Finset a) :
(V (s : Finset 1), s.card < (Finset.biUnion s t).card) e
3 (f: 1> a), Function.Injective f A ¥ (x : 1), f x € t x

Informalization for accessible formal proof libraries

® theorem Finset.all_card_le_biUnion_card_iff_exists_injective
{1 : Type u} {a : Type v} [DecidableEq a] (t : 1 » Finset a) :
(Y (s : Finset 1), s.card s (Finset.biUnion s t).card) e
3 (f: 1> a), Function.Injective f A ¥ (x : 1), f x € t x

® Lett be atype and let a be a type with decidable equality. Let ¢ be an (-indexed
family of finite subsets of a. Then the following are equivalent:

e For all finite subsets s of ¢, |s| < |Um€stx|.

e There exists an injective function f : ¢+ — « such that for all z in ¢,

f(z) € t,.

This takes less specialized training to read!

Autoformalization

An autoformalization system automatically translates informal documents into a
machine-checkable formalization.

As we know, Large Language Models (LLMs) are being applied to this problem.

Training data is scarce

Observation: formalization does not lead to training pairs.
Papers are too informal.

They have to be transformed and expanded.

The formalization might have no obvious connection to structure of the source text.

Blueprints

A blueprint is an design document for a formalization project.

It contains a plan (in natural language) of each theorem and definition that will be in

the formalization.

Creating a formal blueprint takes significant effort and domain knowledge.

Formalizing from the blueprint takes only general knowledge.

Home

Legend =

From the formal blueprint for
Polynomial Freiman-Ruzsa (PFR) Conjecture
project, led by Terence Tao

Dependencies

ﬂ heorem 6.24 (Entropy version of PFR) x\

Let G = F3, and suppose that X?, XJ are G-valued random
variables. Then there is some subgroup H < G such that

d[X?;Up] + d[X3; Up] < 11d[X7; X3],

where Uy is uniformly distributed on H. Furthermore, both
d[X?; Uy| and d[X3; Uy are at most 6d[X?; XJ].

\ LaTeX lean

v

Informalization for training data for autoformalization

Informalization naturally yields a blueprint.

Paper Blueprint

informalization

We could use it to generate two sets of pairs from arbitrary Lean code.

e Blueprint & Lean
e Paper & blueprint

Autoformalizers could train for each translation task independently.

How to informalize

Patrick Massot and | developed a prototype auto-informalizer.

Input: alean 4 module

Output: an interactive document (HTML)

Users write extensions to translate concepts to English.
Currently extensions focus on topology.

Principle: output that is not wrong

<. N

Wrong

Principle: output that is not wrong

|deally, we output correct informal proofs.

Ambiguity, omissions, lack of clarity: these are bugs, but not wrong.

Informalizer uses symbolic Al principles, known as “good old-fashioned Al”.

We can have precise understanding of the informalization, and fix it as needed.

LLMs: output is not generally not wrong

We could apply a large language model (LLM) to the informalization problem.

However:

e While LLMs easily produce informal-looking text, it can be wrong.
e More training and better prompting, decreases probabilities, doesn’t eliminate.

e LLMs struggle with logical reasoning. (It’s gotten significantly better!)
o “Sorry, you are correct that 8 is not odd. However, since 8 is odd, ..”

@

You
The following theorem statement is formalized in Lean. Please give a precise and
accurate translation of it into mathematical English.

theorem Finset.all_card_le_biUnion_card_iff_exists_injective
{t: Type u}{a: Type v} [DecidableEq a] (t: L. = Finset a) :
(v s:Finset(, s.card < (s.biUnion t).card) <
3f: 1> q, Function.InjectivefA v x,fxetx

ChatGPT
The given Lean theorem formalizes a statement about finite sets. Let's translate it into

mathematical English.

"For any types Land a, where a is equipped with a decidable equality, and for any family
of finite sets t indexed by elements of (, the following statement holds: The cardinality
of any finite subset s of Lis less than or equal to the cardinality of the union of the sets
indexed by the elements of s if and only if there exists an injective function f from tto a
such that, for every element x in (, the image of x under f belongs to the set indexed by

X"

The following theorem statement is formalized in Lean. Please give a
precise and accurate translation of it into mathematical English.

ChatGPT 40

theorem Finset.all_card_le_biUnion_card_iff_exists_injective
{t: Type u} {a : Type v} [DecidableEq a] (t: 1 - Finset a) :
(v s: Finset |, #s < #(s.biUnion t)) ©
3f: 1> q, Function.Injective f A v X, f X e t X

Here's a precise and accurate translation of that Lean theorem into mathematical English:

Theorem.
Let {t(x) C a | x € ¢} be afamily of finite subsets of a type «, indexed by a type .

Then the following are equivalent:

» For every finite subset s C ¢, the cardinality of s is less than or equal to the cardinality of the union of

the sets t(x) over all z € s; that s,

Vs Cant, #s < #| Jt(@),

TES

« There exists an injective function f : ¢ — «a such that for every z € ¢, f(z) € t(x).

Demo

General architecture

Lean print_proof Explanation
frontend webapp

Theorem explainer

Proof term

TacticTree inference Tactic explainers :
decompilers

Proposition
explainers

Entity explainers

Expr — LaTeX
LeanTeX

Theorem A set E is open if and only if its complement is closed.

theorem rudin [TopologicalSpace X] (E : Set X) :
IsOpen E o IsClosed Ec

Theorem (rudin). Let X be a topological space. Let E be a subset of X.
Then E is open if and only if E° is closed.

From Bourbaki, Topologie Générale:

Theorem. Let X be a topological space, A a dense subset of X, f: X — Y a
mapping of X into a reqular space Y. If, for each x € X, f(y) tends to f(x)
when y tends to x while remaining in A then f is continuous.

theorem continuous_of_dense [TopologicalSpace X] [TopologicalSpace Y] [RegularSpace' Y]
{A : Set X} (hA : Dense A) (f : X - Y) (hf : V x, ContinuousWithinAt' f A x) : Continuous"' f

Theorem (continuous_of_dense). Let X be a topological space and let Y be a regular topological
space. Let A be a dense subset of X. Let f : X — Y be a function. Assume that for all elements x

of X, f is continuous at x within A. Then f is continuous.

Ontologies

In Al, an ontology is a formal system that models knowledge about a domain:

concepts, properties, and relations

Ontologies are the foundation for reasoning and inference.

Lean and English

Lean 4 has expressions, declarations, metavariables, local contexts, tactic states,
tactics, and so on. (Lean 4 is written in Lean 4, and this is all accessible to us!)

To translate to English, we need

e an ontology compatible with (a subset of) common practice mathematical
language, and
e a mapping from the Lean 4 ontology to the English ontology.

The better the ontology, the more natural the output we can produce.

An ontology for theorem-style paragraphs

Noun

kind

article

text

plural text
inline text

plural inline text

Noun type
text
plural text

Entity
id
name

Adjective
kind
article
text

Accessory
kind
text

structure Entity where structure Adjective where

fvarid : FVarld kind : Name

entityName : String expr : Expr

noun : Option Noun article : Article
provides : Array FVarld := #[fvarid] text : String
adjectives : Array Adjective := #[]

accessories : Array Accessory := #[] structure Accessory where

kind : Name
expr : Expr
text : String

structure NounTypePayload where
type : String
(text pluralText : String)

structure Noun where
kind : Name
article : Article
text : String
pluralText : String
typePayload : Option NounTypePayload := none
(inlineText inlinePluralText : String)

[TopologicalSpace X] [TopologicalSpace Y] [RegularSpace' Y]
Let X be a topological space and let Y be a regular topological space.

A A
art. noun art. adj.

t t |

no

A

un

A

{A : Set X} (hA : Dense A) (f : X - Y)

Let A be a dense subset of X. Let f : X — Y be a function.

A A

A t t

art. adj. noun type art. noun

Entity construction

@[english_param const.TopologicalSpace]l def param_TopologicalSpace : EnglishParam

| fvarid, deps, type@(.app _ (.fvar fvaridE)), _ => do
trace[English] "Using the english_param handler for TopologicalSpace"
let e « getEntityFor fvaridE deps
if e.kind == “Type then
let ns : NounSpec :=
{ kind := ‘TopologicalSpace
article := .a
text := nt!"topological space{.s}"
inlineText := nt!"topological space{.s} {.latex e.entityName}" }
addEntity <| e.pushNoun fvarid (« ns.toNoun #[typel)
else
addEntity <| e.pushAccessory fvarid
{ kind := “TopologicalSpace,
expr := type,
text := "a topology" }
| _, _, _, _ => failure

@lenglish_param const.RegularSpace'] def param_RegularSpace' : EnglishParam
| fvarid, deps, type@(.app (.app _ (.fvar fvaridg)) _), false => do
trace[English] "Using the english_param handler for RegularSpace'"
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := “RegularSpace',
expr := type,
article := .a,
text := "regular" }
| _» _» _» _ => failure

The parameter handlers are currently crafted by hand

@lenglish_param const.Dense] def param_Dense : EnglishParam
fvarid, deps, type@(.app _ (.fvar fvaridg)), false => do
trace[English] "Using the english_param handler for Dense"
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := ‘Dense,

expr := type,

article := .a,

text := "dense" }
| _» _, _, _ => failure

@lenglish_param const.IsOpen] def param_IsOpen : EnglishParam
fvarid, deps, type@(.app _ (.fvar fvaridg)), false => do
trace[English] "Using the english_param handler for IsOpen"
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := “IsOpen,

expr := type,

article := .an,

text := "open" }
| _, _y _y _ => failure

@lenglish_param const.IsClosed] def param_IsClosed : EnglishParam
| fvarid, deps, type@(.app _ (.fvar fvaridE)), false => do
let e « getEntityFor fvaridE deps
addEntity <| e.pushAdjective fvarid
{ kind := “IsClosed,
expr := type,
article := .a,
text := "closed" }
v —y _y _ => failure

Basic grammatical construction

“Let entityName [: noun.type] be article adjectives noun.text with accessories.”
Let n be a natural number.

Let f/: X — Y be an injective function.

“For all adjectives noun.inlineText with accessories, ...”

For all finite types T with decidable equality, ...

A simple calculation: merging

If consecutive entities have compatible data, we can merge their introductions into
a single sentence.

theorem inj_comp {a B v} {f : a » B} {g : B » v} (hf : injective f) (hg : injective g) :
injective (g o f) :=

Theorem (inj_comp). Let o, 5 and v be types. Let f : « — Sand g : S — -y be injective functions.

Then g o f is injective.

theorem inj_comp {a B vy} {f : a » B} {g : B » y} (hf : injective f) (hg : injective g) :
injective (g o f) :=

Theorem (inj_comp). Let o, 5 and v be types. Let f : « — Sand g : S — -y be injective functions.

Then g o f 1s injective. x I noun 1 type 1 type adj. noun

| | |

Propositions to English

#english_prop V {a B vy : Type _} {f : « = B} {g : B = v},
injective f =+ injective g -+ injective (g o f)

for all types «, types 3, types 7, injective functions f : @« — 3 and
injective functions g : 3 — 7, g o f is injective

Small wrinkle: grammatical agreement

With English, there are two main grammatical features that need to be observed:

e Plurality
o Verbs: is/are
o Nouns: function/functions

e Articles

o A function
o Aninjective function

We get to avoid tenses, but we do make use of the subjunctive for “to be”:

e Letn be a natural number.
e Suppose nis a natural number.

Describing proofs

The next big part: representing proofs

Main elements:

e Deducing tactic proof structure
e Tactic describers
e Proof term decompiler

InfoTrees

Original purpose: providing all the information one sees in the VS Code IDE,
including mouseover text, jump-to-definition, and the Infoview.

Nat.zero_add (n : N) : @ + n =n Infoview (goal states)
dd_com /
with | import Init.Data.Nat.Basic mn' * N
xact (Nat.zero add _).symm lh T m + n' =n' +m
h => 1 — 1
m+ (n 1) =m+ n

(n' + 1) = (m + n'Y + 1 *= Nat_add <iirr

Excerpt of InfoTree data Hovering on ISR

<Node elaborator="Lean.Parser.Tactic._aux_Init_Tactics__ macroRules_Lean_Parser_Tactic_tacticHave__1" type="tactic">

<Node elaborator="Lean.Parser.Tactic._aux_Init_Tactics___ macroRules_Lean_Parser_Tactic_tacticRefine_lift__1" type="tactic
<Node elaborator="Lean.Elab.Tactic.evalFocus" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalFocus" type="tactic"></Node>
<Node elaborator="Lean.Elab.Tactic.evalTacticSeq" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalTacticSeqlIndented" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalParen" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalTacticSeq" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalTacticSeqlIndented" type="tactic">
<Node elaborator="Lean.Elab.Tactic.evalRefine" type="tactic">
<Node binder="false" elaborator="Lean.Elab.Term.elabNoImplicitLambda" type="term">
<type>x = y</type>
<Node binder="false" elaborator="Lean.Elab.Term.expandHave" type="term">
<type>x = y</type>
<Node type="macro_expansion'>

<from>have key : f x = f y := by exact hg _ _ h;
?_</from>

<to>let_fun key : f x = f y := by exact hg _ _ h;
?_</to>

<Node binder="false" elaborator="Lean.Elab.Term.elabLetFunDecl" type="term">
<type>x = y</type>
<Node binder="false" elaborator="«_aux_Init_Notation__ macroRules_term_=__2»" type="term">
<type>Prop</type>
<Node type="macro_expansion'>
<from>f x = f y</from>
<to>binrels%s Eqt (f x)(f y)</to>
<Node binder="false" elaborator="Lean.Elab.Term.0Op.elabBinRel" type="term">
<type>Prop</type>
<Node binder="false" type="term">
<type>Prop</type>

Tactic describers

These consume these trees and create hierarchical explanations.

/—— A tactic describer is a function that takes a "TacticTree' and returns a “ProofStep.

If it does not want to be responsible for the tree, then it can use “throwInapplicableDescriber’. -/
def TacticDescriber := TacticTree - DescriberM ProofStep

Tactics are semi-hierarchical

We want to recover the true proof tree.

Many tactics produce side goals that are solved for later.

obtain (V, V_in, V_op, hV) : 3V € Nhd x, IsOpen V A f '' (V n A) c V'

constructor
_ - rcases (hf x).2 V' V'_in with (U, U_in, huU)
« trivial . g .
rcases exists_IsOpen_Nhd U_in with (V, V_in, V_op, hVU)
rfl use V, V_in, V_op

exact (image_subset f $ inter_subset_inter_left A hVU).trans huU

Tactic describers may elect to collect side goals.

Explanations

The output of a tactic describer is a piece of a structured document. These support:

e Block indentation, paragraph breaks, tooltips

e Expansion widgets and highlights that cross paragraph boundaries
e Goal states

e Multiline equations

There is a JavaScript renderer for Explanations.

This is not specialized to LeanInformal.

Proof term explanations

For many tactics, we decompile its generated proof term into an equivalent
seqguence of simpler tactics, then compile that into English.

Reason 1. We want to avoid recapitulating tactic implementations.
Reason 2. Lean files are written primarily to be understood by Lean.

Reason 3. Not everything that a computer wants to see is similarly desired by a
human reader.

This is used by exact, apply, refine, and others.

exact hf x y key

Using our assumption that f is injective and our assumption that f(z) = f(y) proves z = y.

LeanTeX https://github.com/kmill/LeanTeX-mathlib

example (abec:R)
(ha : B <a) (hb ¢ 8 ¢ b) (he : 8 <) [h ¢ axb¥e = 1} :

3 < Real.sqrt ((a +b) / (a + 1)) + Real.sqgrt ((b + ¢c) / (b + 1)) + Real.sqrt ((c + a) / (c + 1)) := by

texify «—— v HTML Display

sorry
a,b,c: R

ha:0<a
hb:0<b
hc:0<c
h:a-b-c=1

a—+b ¢b+c ¢c+a
F3<
3 < a+1 & b+1 + c+1

example (n : N) : ¥ i € Finset.range n, i =n* (n - 1) / 2 := by
texify

sorry \
v HTML Display

InformalLean: Ongoing and future work

e Nailing down a spec for the various kinds of describers.
o Once that’s done, we’ll release InformallLean.
o We’ll need help getting mathlib coverage!
e More sophisticated interactions.
o Communicating information about typeclass instances.
o Answering queries (“where is this hypothesis used”)
e Using InformalLean in the classroom.
o Do interactive proofs improve learning outcomes?
o Oris the struggle to read a book like Rudin essential to the process?
e Generating that synthetic Al training data!

Natural Language for Writing Proofs

https://github.com/PatrickMassot/verbose-lean4

Verbose Lean [vassot 2024]

Example "The squeeze theorem."
Given: (uvw : N>R) (L :R)
Assume: (hu : u converges to 1) (hw : w converges to 1)
(h : ¥n,un<vn)

(h" : ¥n, vn<swn)
Conclusion: v converges to 1
Proof:
Let's prove that V¥ € >0, 3 N, Yn2N, |[vn-1] £¢
Fix € > 0
Since u converges to 1 and € > O we get N such that hN : Y n 2 N, |lun - 1] £ ¢
Since w converges to 1 and € > O we get N' such that hN' : Y n 2 N', |lwn - 1] £ ¢
Let's prove that max N N' works : Y n 2 max N N', [vn-1] £¢
Fix n 2 max N N'
Since Y n2N, |un-1 <egandn2>2N weget hNL : |un-1] £¢
Since ¥ n 2 N', [wn -1 <egandn2>N'"weget hN'L: [wn-1| £¢

Let's prove that |[vn - 1] < ¢

Let's first prove that -e < vn -1

Calc -€e £ un - 1 since |un - 1]
_ fvn-T1lsinceun<vn

Let's now prove that v n - 1 < ¢

Calc vn-1<wn-71 sincevn<s<wn

€ since [wn - 1] < ¢

IN
m

IN |

QED

Motivation

e |t's for learning to read and write traditional proofs.
o Meant to be an aid while developing a paper proof.
o Students can transfer their finished proofs to paper with minor editing.
e [tis not meant to be a controlled natural language interface for Lean.
o Learning to formalize is limited by formalization knowledge and skill, not surface syntax.
o Controlled natural language has a worse “guess the grammar” problem.

e Design goals:

o Giving clear proof states (essential for learning how to write proofs, but rarely provided!)
o Training students how to apply the obvious goal-motivated proof steps.
Routine steps Risky steps

o Training the difference between free and bound variables.
o Being clear on stating / proving / using

m Professionals blur the distinction but “know what they’re doing” so it is “ok”.

m Thatis not a good model for students learning to be rigorous.
o Localizable to students’ native language. (Comes with English and French syntax.)

Rough architecture

Demo

Other systems

Waterproof for Coq. Very similar, with similar pedagogical goals.

Goal 2 is the infimum of [2, 5).
Proof.
We need to show that (2 is a _lower bound_ for [2, 5)
A (VW 1ER, 1Lis a _lower bound_ for [2, 5) = 1 = 2)).
We show both statements.
- We need to show that (2 is a lower bound for [2, 5)).
We need to show that (V c € [2, 5), 2 = c).
Take ¢ € [2, 5).
We conclude that (2 = c).
- We need to show that
(Vv 1LER, 1L is a lower bound for [2, 5) = 1 = 2).
Take 1 € R. Assume that (1 is a lower bound for [2, 5)).
We conclude that (1 = 2).
Qed.

Other systems

Naproche. Aims to be a natural language proof language.

Uses Formal Theory Language (ForThel), translates its custom logic to Isabelle, and
uses a “mile marker” declarative approach to proving, relying on a high-powered
tactic to fill in the arguments.

Proposition. 9”2 = p for no positive rational number q.

Proof by contradiction.

Assume the contrary.

Take a positive rational number g such that p = g”2.

Take coprime m,n such that m *x q = n. Then p *x m"2 = n™2.

Therefore p divides n. Take a natural number k such that n = k x p.
Then p * m™2 = p *x (k * n).

Therefore m *x m is equal to p *x k™2.

Hence p divides m. Contradiction.

QED.

Other systems

Mizar. Uses a wordy/friendly grammar. Has the ability to output to natural language,
used by the Journal of Formalized Mathematics.

itk = j+k implies i=j;
proof
defpred P[natural number] means
i+$1 = j+$1 implies i=j;
A1: P[0]
proof
assume BO: i+0 = j+0;
Bi: i+0 = i by INDUCT:3;
B2: j+0 = j by INDUCT:3;
hence thesis by BO,B1,B2;
end;
A2: for k st P[k] holds P[succ k]
proof
let 1 such that Ci: P[1];
assume C2: i+succ l=j+succ 1;
then C3: succ(i+l) = j+succ 1 by C2,INDUCT:4
.= succ(j+1) by INDUCT:4;
hence thesis by C1,INDUCT:2;
end;
for k holds P[k] from INDUCT:sch 1(A1,A2);
hence thesis;
end;

The Future

The Future

What are other directions?

What kinds of mathematical knowledge aren’t being captured by formalization.
Can they be?

Use LLMs to drive stylistic choices to make high quality and accurate
informalizations?

Would a formally verified informalization tool have any applications?

For natural language translations for undergraduate audiences, automatic
specialization to appropriate settings? (e.g. “modules” -> “vector spaces”)
With classical NLP, we can feel responsible for the translations, even ones we
have not reviewed personally. When can ML translations be trustworthy
enough to not need human review? Maybe this is audience-dependent.

Less stringent proof checkers for less formal proofs?

(“Interactive Plausibility Assistants™?)

